Algebra and Logic

, Volume 28, Issue 2, pp 152–161 | Cite as

Free subgroups of generalized triangle groups

  • G. Rosenberger


Mathematical Logic Free Subgroup Triangle Group Generalize Triangle Generalize Triangle Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. Baumslag, J. Morgan, and P. Shalen, "Generalized triangle groups," Math. Proc. Camb. Phil. Soc.,102, 25–31 (1987).Google Scholar
  2. 2.
    M. D. E. Conder, "Three-relator quotients of the modular group," Q. J. Math. Oxford,38, 427–447 (1987).Google Scholar
  3. 3.
    H. S. M. Coxeter and W. O. J. Moser, "Generators and relations for discrete groups," Ergeb. Math. Grenzgebiette,14, Springer-Verlag, Berlin-Heidelberg-New York (1972).Google Scholar
  4. 4.
    B. Fine, J. Howie, and G. Rosenberger, "One-relator quotients and free products of cyclics," Proc. Am. Math. Soc.,102, 249–254 (1988).Google Scholar
  5. 5.
    B. Fine, F. Levin, and G. Rosenberger, "Free subgroups and decompositions of one-relator products of cyclics; Part 1: The Tits alternative," Arch. Math.,50, 97–109 (1988).Google Scholar
  6. 6.
    J. R. Ford, Automorphic Functions, Chelsea, New York (1951).Google Scholar
  7. 7.
    G. Kern-Isberner and G. Rosenberger, "Über Diskretheitsbedingungen und die diophantische Gleichung ax2 + by2 + cz2 = dxyz," Arch. Math.,34, 481–493 (1980).Google Scholar
  8. 8.
    F. Levin and G. Rosenberger, "A class of SQ-universal groups," Preprint, Dortmund Univ. (1987).Google Scholar
  9. 9.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-Heidelberg-New York (1977).Google Scholar
  10. 10.
    A. Majeed and A. W. Mason, "Solvable-by-finite subgroups of GL(2, F)," Glasgow Math. J.,19, 45–48 (1978).Google Scholar
  11. 11.
    Y. Moriah, "Heegard splittings of Seifert fibered spaces," Preprint, Vancouver Univ. (1987).Google Scholar
  12. 12.
    J. Tits, "Free subgroups in linear groups," J. Algebra,20, 250–270 (1972).Google Scholar
  13. 13.
    H. Zieschang, E. Vogt, and H.-D. Coldewey, "Surfaces and planar discontinuous groups," Lect. Notes in Math.,835, Springer-Verlag, Berlin-Heidelberg-New York (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • G. Rosenberger
    • 1
  1. 1.Dortmund University, Federal Republic of GermanyGermany

Personalised recommendations