Journal of thermal analysis

, Volume 38, Issue 7, pp 1701–1728 | Cite as

High-pressure differential thermal analysis (HP-DTA)

I. Dehydration reactions at elevated pressures in phyllosilicates
  • S. Guggenheim
  • A. F. Koster van Groos
Special Review

Abstract

High-pressure differential thermal analysis results are used to describe dehydration reactions for the clay-like materials of Na-rich montmorillonite, K-, Ca-, and Mg-exchanged montmorillonite, kerolite, and a high-pressure phase resembling talc/mica with excess water. Because sealed capsules may be used to contain fluids, it is possible to evaluate the role of H2O in these reactions. A separate paper (Part II) addresses the use of HP-DTA to understand dehydroxylation reactions in these materials.

Keywords

clay-like materials dehydration reactions high-pressure DTA 

Zusammenfassung

Hochdruck-DTA Ergebnisse werden verwendet, um die Dehydratations-reaktionen für die tonartigen Materialien von Na-reichem Montmorillonit, von K-, Ca- und Mg-substituiertem Montmorillonit, Kerolit und einer durch Konfektionieren von Talkum/Glimmer mit überschüssigem Wasser entstandenen Hochdruckphase zu beschreiben. Da für Flüssigkeiten verschlossene Kapseln verwendet werden können, kann die Rolle von Wasser in diesen Reaktionen festgestellt werden. Ein anderer Beitrag (Teil II) beschreibt die Anwendung von HP-DTA bei der Untersuchung der Dehydroxylierungsreaktionen in diesen Materialien.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Wendlandt, in ‘Thermal Analysis’ 3rd Edit. Wiley & Sons, N. Y. 1986.Google Scholar
  2. 2.
    A. F. Koster van Groos, Jour. Phys. Chem., 83 (1979) 2976.CrossRefGoogle Scholar
  3. 3.
    S. Guggenheim and A. F. Koster van Groos, J. Thermal Anal., (in press) Part II of present paper.Google Scholar
  4. 4.
    A. F. Koster van Groos and S. Guggenheim, in ‘Thermal Analysis in Clay Science’ J. W. Stucki, D. Bish and F. A. Mumpton, eds., Clay Minerals Society, Boulder, 1990.Google Scholar
  5. 5.
    J. R. Holloway, in ‘Research for High Pressure and Temperature’ G. C. Ulmer, ed., Springer-Verlag, N. Y. 1971 p. 217.Google Scholar
  6. 6.
    H. S. Yoder Jr., Trans. Amer. Geophys. Union, 31 (1950) 827.Google Scholar
  7. 7.
    A. F. Koster van Groos and J. P. ter Heege, Jour. Geol., 81 (1973) 717.Google Scholar
  8. 8.
    H. van Olphen and J. J. Fripiat, Eds., Data Handbook for Clay Materials and other Non-metallic Minerals, Pergamon Press, Oxford 1979.Google Scholar
  9. 9.
    G. W. Brindley, D. L. Bish and H. Wan, Mineral. Mag., 41 (1977) 443.Google Scholar
  10. 10.
    C. B. Sclar, A. I. Benimoff and A. L. Begley, Eos, Trans. Amer. Geophys. Union, 68 (1987) 433.Google Scholar
  11. 11.
    A. K. Miller, S. Guggenheim and A. F. Koster van Groos, Amer. Mineral., 76 (1991) 106.Google Scholar
  12. 12.
    A. F. Koster van Groos and S. Guggenheim, Amer. Mineral., 69 (1984) 872.Google Scholar
  13. 13.
    L. Heller, V. C. Farmer, R. C. MacKenzie, B. D. Mitchell, and H. F. W. Taylor, Clay Minerals Bull., 5 (1962) 56.Google Scholar
  14. 14.
    J. H. Keenan, F. G. Keyes, P. G. Hill and J. G. Moore, Eds. Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid and Solid Phases, Wiley, N. Y. 1978.Google Scholar
  15. 15.
    A. F. Koster van Groos and S. Guggenheim, Clays Clay Minerals, 34 (1986) 281.Google Scholar
  16. 16.
    A. F. Koster van Groos and S. Guggenheim, Amer. Mineral., 72 (1987) 292.Google Scholar
  17. 17.
    R. E. Grim, Clay Mineralogy. McGraw-Hill, N. Y. 1968 p. 288.Google Scholar
  18. 18.
    V. C. Farmer, Soil Sci., 112 (1971) 62.Google Scholar
  19. 19.
    P. F. Low, Soil Sci. Soc. Amer. Jour., 43 (1979) 651.Google Scholar
  20. 20.
    B. G. Ellis and M. M. Mortland, Amer. Mineral., 47 (1962) 371.Google Scholar
  21. 21.
    G. M. Anderson, in ‘Applications of thermodynamics to petrology and ore deposits’, H. J. Greenwood, ed., Mineralogical Association of Canada, Toronto 1977 p. 17.Google Scholar
  22. 22.
    H. C. Helgeson and D. H. Kirkham, Amer. J. Sci., 274 (1974) 1089.Google Scholar
  23. 23.
    R. A. Robie, B. S. Hemingway and J. R. Fisher, U. S. Geol. Surv. Bull., 1452 (1978).Google Scholar
  24. 24.
    A. K. Miller, S. Guggenheim and A. F. Koster van Groos, Clays Clay Mineral., 39 (1991) 127.Google Scholar
  25. 25.
    C. B. Sclar, L. C. Carrison and C. M. Schwartz, Trans. Amer. Geophys. Union, 46 (1965) 184.Google Scholar
  26. 26.
    J. F. Bauer and C. B. Sclar, in ‘High-Pressure Science and Technology’ (proceedings Sixth AIRAPT Conference), K. D. Timmerhaus and M. S. Barber, eds. Plenum Press, N. Y. 1979 p. 144.Google Scholar
  27. 27.
    J. F. Bauer and C. B. Sclar, Amer. Mineral., 66 (1981) 576.Google Scholar
  28. 28.
    B. W. Evans and S. Guggenheim, in ‘Hydrous phyllosilicates and other non-mica layer silicates’ S. W. Bailey, ed., Mineralogical Society of America (1988) 225.Google Scholar
  29. 29.
    K. Yamamoto and S. Akimoto, Amer. Jour. Sci., 277 (1977) 288.Google Scholar
  30. 30.
    S. W. Bailey, in ‘Crystal Structures of Clay Minerals and their X-ray Identification’ G. W. Brindley and G. Brown, eds., Mineralogical Society of Great Britain, London 1984 p. 1.Google Scholar

Copyright information

© Wiley Heyden Ltd, Chichester and Akadémiai Kiadó, Budapest 1992

Authors and Affiliations

  • S. Guggenheim
    • 1
  • A. F. Koster van Groos
    • 1
  1. 1.Dept. of Geological Sciences, m/c 186University of Illinois at ChicagoChicagoUSA

Personalised recommendations