Journal of thermal analysis

, Volume 46, Issue 5, pp 1449–1458 | Cite as

Diagramme de phases du systeme binaire LiNO3-NaNO3

  • N. Bélaïd-Drira
  • H. Zamali
  • M. Jemal
Article

Abstract

Phase diagram of the binary system LiNO3-NaNO3 has been obtained by using direct and differential thermal analysis between 323 and 623 K. This system is characterized by an eutectic plateau at 467 K. The eutectic point is at 0.465 mole NaNO3. A peritectic appears at 550 K. There is no miscibility in the solid state. These findings associated with some other thermodynamic results have been used to calculate the activities of the constituents along the liquids curve and the excess thermodynamic functions at 618 K. The constituents seem not to have a symmetrical influence on the thermodynamic quantities.

Keywords

eutectic point LiNO3-NaNO3 system phase diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références bibliographiques

  1. 1.
    M. Gaune-Escard, Y. Fouque, G. Hatem, N. Mossarello et H. L. Lukas, S. E. E. T. Marseille, Compilation Thermosalt, 6 (1986).Google Scholar
  2. 2.
    A. N. Campbell et A. J. R. Campbell, Canadian J. Research, 25 (1947)Google Scholar
  3. 3.
    G. G. Diogenov, Dokl. Akad. Nauk SSSR, 89 (1953) 305.Google Scholar
  4. 4.
    N. M. Tsindrik et N. M. Sokolov, Zh. Obsh. Khim., 28 (1958) 1728.Google Scholar
  5. 5.
    P. Franzosini et C. Sinistri, Rendicontia, 3 (1963) 411.Google Scholar
  6. 6.
    L. Sinistri et P. Franzosini, Ric. Sci. Rend. Chim., 3 (1963) 419.Google Scholar
  7. 7.
    R. P. Shisholina et P. I. Protsenko, Zh. Inorg. Khim., 8 (1963) 1436.Google Scholar
  8. 8.
    Y. Doucet, C. Vallet et H. Taulemesse, C. R. Acad. Sc. Paris, Serie C, t., 266 (1968) 1189.Google Scholar
  9. 9.
    E. Schurmann et Lj. Nedeljkovic, Ber. Bunsen-Gesellschaft, 74 (1970) 462.Google Scholar
  10. 10.
    A. V. Storonkin, I. V. Vasil'kova, V. I. Shamko et T. M. Gel'fand, Russ. J. Phys. Chem., 45 (1971) 2359.Google Scholar
  11. 11.
    C. Vallet, J. Chem. Thermodynamics, 4 (1972) 105.Google Scholar
  12. 12.
    A. V. Storonkin, I. V. Vasil'kova, I. I. Kozkina et V. I. Shamko, Russ. J. Phys. Chem., 46 11 (1972) 1578, Anglais; 2764, Russe.Google Scholar
  13. 13.
    A. V. Storonkin, I. V. Vasil'kova et I. Shamkov, Vestn. Lenin Univ. Fiz. Khim., 2 (1973) 67.Google Scholar
  14. 14.
    R. Vilcu, F. Irinei et E. Tatu, Rev. Roumaine Chim., 21 (1976) 491.Google Scholar
  15. 15.
    Y. Dessureault, J. Sangster et A. D. Pelton, J. Chim. Phys., 87 (1990) 407.Google Scholar
  16. 16.
    Y. Dessureault, J. Sangster et A. D. Pelton, J. Chim. Phys., 19 (1990).Google Scholar
  17. 17.
    H. Zamali et M. Jemal, Journées de Montpellier, AFCAT. 20–22 Mai, 1985, Vol. 16, p. 298–304.Google Scholar
  18. 18.
    H. Zamali et M. Jemal, J. Thermal Anal., 41 (1994) 1.Google Scholar
  19. 19.
    O. J. Kleppa et L. S. Hersh, J. Chem. Phys., 34 (1961) 351.CrossRefGoogle Scholar
  20. 20.
    H. Zamali, Thčse de Doctorat de Spécialité Option Chimie, Fac. Sc. Tunis, 1982.Google Scholar
  21. 22.
    Y. Takahashi, R. Sakamoto et M. Kamimoto, Int. J. Thermophys., 9 (1988)Google Scholar
  22. 23.
    H. Zamali, Communication privée 1993.Google Scholar
  23. 24.
    J. D. Pandey, D. M. Alec, N. Pant et A. Jain, J. Indian Chem. Soc., 67 (1990) 374.Google Scholar
  24. 25.
    R. W. Carling, Thermochim. Acta, 60 (1983) 265.CrossRefGoogle Scholar
  25. 26.
    I. Kozuhika et M. Toshiyuki, Bull. Chem. Soc. Japan, 56 (1983) 2093.Google Scholar
  26. 27.
    I. Barin et O. Knacke, Thermochim. Inorg. Subst., Springer-Verlag, Berlin 1973.Google Scholar
  27. 28.
    K. Mazayuki, Thermochim. Acta, 41 (1980) 361.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • N. Bélaïd-Drira
    • 1
  • H. Zamali
    • 1
  • M. Jemal
    • 1
  1. 1.Département de Chimie, Faculté des SciencesCampus UniversitaireTunis Tunisie

Personalised recommendations