Skip to main content
Log in

Determination of differences in free and bound water contents of beef muscle by DSC under various freezing conditions

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The differences in bound water content of beef semimembranous muscle samples obtained from previously chilled (24 h at +4°C) middle-aged beef carcasses were determined by the use of DSC. Initially, samples obtained from fresh, unprocessed meat were frozen at −40, −50 or −65°C to determine their melting peaks for freezable water (free water) content with the use of DSC. The samples were then subjected to an environment with an ambient temperature of −30, −35, −40 or −45°C, with no air circulation, or with an air circulation speed of 2 m s−1, until a thermal core temperature of −18°C was attained; this was followed by thawing the samples until a thermal core temperature of 0°C was reached. This process was followed by subjecting the samples to the ambient temperatures mentioned above, to accomplish complete freezing and thawing of the samples, with DSC, and thereby determination of the freezable water contents, which were then used to determine the peaks of melting. The calculated peak areas were divided by the latent heat of melting for pure water, to determine the freezable water contents of the samples. The percentage freezable water content of each sample was determined by dividing its freezable water content by its total water content; and the bound water content of each sample was determined by subtracting the percentage free water content from the total. In view of the fact that the free water content of a sample is completely in the frozen phase at temperatures of −40°C and below, the calculations of free and bound water contents of the samples were based on the averages of values obtained at three different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aktaş, Y. Tülek and H. Y. Gökalp, J. Thermal Anal., 48 (1997) 259.

    Article  Google Scholar 

  2. O. Fennoma and W. D. Powrie, Adv. Food Res., 13 (1964) 219.

    Article  Google Scholar 

  3. D. R. Heldman, Food Technol., 37 (1983) 103.

    Google Scholar 

  4. B. Cemeroglu, Fruit and Vegetable Technology (Turkish) Food Technology Association, Ankara, Turkey, 1986, p. 517.

  5. T. Nakayama and M. Yamamoto., J. Food Sci., 42 (1977) 900.

    Article  Google Scholar 

  6. R. J. Carrol, J. R. Cavanaugh and F. P. Rorer, J. Food Sci., 46 (1981) 1091.

    Article  Google Scholar 

  7. J. R. Wagner and M. C. Anon, J. Food Technol., 20 (1985a) 735.

    Article  Google Scholar 

  8. M. Wootton, N. T. Hang and H. L. P. Thi, J. Food Sci., 46 (1981) 1336.

    Article  Google Scholar 

  9. J. R. Wagner and M. C. Anon, J. Food Sci., 50 (1985b) 1547.

    Article  CAS  Google Scholar 

  10. J. R. Wagner and M. C. Anon, J. Food Technol., 21 (1986) 9.

    Article  CAS  Google Scholar 

  11. R. G. Poulter, D. A. Ledward, S. Godber, G. Hall and B. Rowlands, J. Food Technol., 20 (1985) 203.

    Article  CAS  Google Scholar 

  12. R. J. Hastings, G. W. Rodger, R. Park, A. D. Matthews and E. M. Anderson, J. Food Sci., 50 (1985) 503.

    Article  Google Scholar 

  13. B. Y. Kim, D. D. Hamann, T. C. Lenier and M. C. Wu, J. Food Sci., 51 (1986) 951.

    Article  Google Scholar 

  14. M. N. Martino and N. E. Zaritzky, J. Food Sci., 53 (1988) 1631.

    Article  Google Scholar 

  15. L. G. Parducci and R. B. Duckworth, J. Food Technol., 7 (1972) 423.

    Article  CAS  Google Scholar 

  16. L. Heinevetter, B. Gassmann and J. Kroll, Die Nahrung., 31 (1987) 889.

    Article  CAS  Google Scholar 

  17. D. Q. Wang and E. Kolbe, J. Food Sci., 56 (1991) 302.

    Article  Google Scholar 

  18. T. A. Gillet, D. E. Meiburg, C. L. Brown and S. Siman, J. Food Sci., 42 (1977) 1606.

    Article  Google Scholar 

  19. E. Li-Chan, S. Nakai and D. F. Wood, J. Food Sci., 50 (1985) 1034.

    Article  CAS  Google Scholar 

  20. H. Y. Gökalp, M. Kaya and Ö. Zorba, Meat Products Processing Technology (Turkish), Atatürk Uni., Agricultural College, Food Engineering Dept., Erzurum, Turkey, 1994, p. 561.

    Google Scholar 

  21. G. W. Froning and S. Neelekanton, Poultry Sci., October (1970) 839.

    Google Scholar 

  22. C. E. Lyon, D. Hamm and J. E. Thomson, Poultry Sci., 62 (1982) 965.

    Google Scholar 

  23. L. Riedel, Kaltetechnik., 9 (1957) 38.

    Google Scholar 

  24. H. G. Schwarzberg, J. Food Sci., 41 (1976) 152.

    Article  Google Scholar 

  25. C. S. Chen, J. Food Sci., 50 (1985) 1163.

    Article  CAS  Google Scholar 

  26. O. R. Fennema, Food Chemistry (Second Ed.). Marcel Dekker, Inc., New York, USA, 1985, p. 991.

    Google Scholar 

  27. Q. T. Pham, J. Food Sci., 52 (1987) 210.

    Article  Google Scholar 

  28. R. P. Singh and D. R. Heldman, Introduction to Food Engineering (Second Ed.). Academic Press, Inc., London, UK, 1993, p. 499.

    Google Scholar 

  29. L. H. Barlett, Refrig. Eng., 47 (1984) 377.

    Google Scholar 

  30. A. Polymenidis, Die Fleiscwirtsch., 5 (1978) 728.

    Google Scholar 

  31. F. Wirth, Fleischwirtsch., 59 (1979) 1659.

    Google Scholar 

  32. H. Y. Gökalp and Y. Tülek, 2nd National Refrigeration and Air Conditioning Congress and International Refrigeration Colloquium, 6–8 May, Adana, Turkey, 1992, p. 299–308.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktaş, N., Tülek, Y. & Gökalp, H.Y. Determination of differences in free and bound water contents of beef muscle by DSC under various freezing conditions. Journal of Thermal Analysis 50, 617–624 (1997). https://doi.org/10.1007/BF01979033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979033

Keywords

Navigation