Skip to main content
Log in

Kinetics of the thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O was studied under isothermal conditions in flowing air and argon. Dissociation of the above complex occurs in three stages. The kinetics of the particular stages thermal decomposition have been evaluated. The RN and/or AM models were selected as those best fitting the experimental TG curves. The activation energies,E, and lnA were calculated with a conventional procedure and by a new method suggested by Kogaet al. [10, 11]. Comparison of the results have showed that the Arrhenius parameters values estimated by the use of both methods are very close. The calculated activation energies were in air: 96 kJ mol−1 (R1.575, stage I); 101 kJ mol−1 (Ain1.725 stage II); 185 kJ mol−1 (A 2.9, stage III) and in argon: 66 kJ mol−1 (A 1.25, stage I); 87 kJ mol−1 (A 1.825, stage II); 133 kJ mol−1 (A 2.525, stage III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Wendlandt, Thermal Analysis, Wiley, New York, 3rd edn., 1986, Chapt. 2, 5, 8.

    Google Scholar 

  2. E. L. Charsley and S. B. Warrington (Eds), Thermal Analysis — Techniques and Applications, Royal Society of Chemistry, Cambridge 1992, p. 1–156.

    Google Scholar 

  3. F. Paulik, Special Trends in Thermal Analysis, Wiley, New York 1995.

    Google Scholar 

  4. W. E. Brown, D. Dollimore and A. K. Galwey, in C. H. Bamford and C. F. H. Tipper (Eds), Comprehensive Chemical Kinetics, Vol. 22, Elsevier, Amsterdam 1980.

    Google Scholar 

  5. M. Reading, Thermochim. Acta, 135 (1988) 37.

    Article  CAS  Google Scholar 

  6. J. Rouquerol, Thermochim. Acta, 144 (1989) 209.

    Article  CAS  Google Scholar 

  7. J. H. Sharp, G. W. Brindley and B. N. N. Achar, J. Amer. Ceram. Soc., 49 (1966) 379.

    Article  CAS  Google Scholar 

  8. C. Różycki and M. Maciejewski, Thermochim. Acta, 96 (1985) 91.

    Article  Google Scholar 

  9. N. J. Carr and A. K. Galwey, Thermochim. Acta, 79 (1984) 323.

    Article  CAS  Google Scholar 

  10. N. Koga, J. Šesták and J. Malek, Thermochim. Acta, 188 (1991) 333.

    Article  CAS  Google Scholar 

  11. N. Koga and H. Tanaka, J. Thermal Anal., 41 (1994) 455.

    Article  CAS  Google Scholar 

  12. R. Ozao and M. Ochiai, J. Thermal Anal., 40 (1993) 1331.

    Article  CAS  Google Scholar 

  13. E. Ingier-Stocka, in preparation.

  14. E. Ingier-Stocka, J. Thermal Anal., 40 (1993) 1357.

    Article  CAS  Google Scholar 

  15. Inorg. Synt., 2 (1946) 220.

  16. E. Ingier-Stocka, Thermochim. Acta, 170 (1990) 107.

    Article  CAS  Google Scholar 

  17. M. Maciejewski and A. Reller, Thermochim. Acta, 110 (1987) 145.

    Article  CAS  Google Scholar 

  18. H. Tanaka, Thermochim. Acta, 48 (1981) 137.

    Article  CAS  Google Scholar 

  19. A. K. Galwey, S. G. McKee and T. R. B. Mitchell, Reactivity of Solids, 6 (1988) 173.

    Article  CAS  Google Scholar 

  20. A. K. Galwey, Thermochim. Acta, 96 (1985) 259.

    Article  CAS  Google Scholar 

  21. A. Coetzee, M. E. Brown, D. J. Eve and C. A. Strydom, J. Thermal Anal, 41 (1994) 357.

    Article  CAS  Google Scholar 

  22. A. Venkataraman, N. V. Sastry and A. Ray, J. Phys. Chem. Solids, 53 (1992) 681.

    Article  CAS  Google Scholar 

  23. M. E. Brown, D. Dollimore and A. K. Galwey, Thermochim. Acta, 21 (1977) 103.

    Article  CAS  Google Scholar 

  24. D. Dollimore, J. Dollimore and J. Little, J. Chem. Soc. A (1969) 2946.

    Google Scholar 

  25. A. Alloun and C. G. R. Nair, Thermochim. Acta, 92 (1985) 767.

    Article  CAS  Google Scholar 

  26. B. Topley and M. L. Smith, J. Chem. Soc., (1935) 321.

  27. J. Błażejowski, Thermochim. Acta, 76 (1984) 359.

    Article  Google Scholar 

  28. H. M. Fogel and J. E. House, Jr, J. Thermal Anal., 34 (1988) 231.

    Article  CAS  Google Scholar 

  29. C. G. R. Nair and S. Mathew, Thermochim. Acta, 150 (1989) 63.

    Article  CAS  Google Scholar 

  30. A. Taskinen, P. Taskinen and M. H. Tikkanen, Reactivity of Solids, Proc. 8th Int. Symp. Plenum, New York 1977, p. 617.

    Google Scholar 

  31. D. Dollimore and T. A. Evans, Thermochim. Acta, 178 (1991) 263.

    Article  CAS  Google Scholar 

  32. H. Jost, J. Jedamzik, M. Rossberg and Ch. Staedler, Z. Phys. Chemie, Leipzig, 266 (1985) 311.

    CAS  Google Scholar 

  33. S. A. Jones, J. Pearce and J. Fenerty, Proc. 9th ICTA Congress 1988 (Abstr.) p. 176.

  34. D. Dollimore, T. A. Evans and Y. F. Lee, Thermochim. Acta, 194 (1992) 215.

    Article  CAS  Google Scholar 

  35. P. E. Yankwich and P. D. Zavitsanos, Pure Appl. Chem., 8 (1964) 287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingier-Stocka, E. Kinetics of the thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O. Journal of Thermal Analysis 50, 603–616 (1997). https://doi.org/10.1007/BF01979032

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979032

Keywords

Navigation