Skip to main content
Log in

Modelling the kinetics of solute segregation to partial dislocations for isothermal microcalorimetric evaluations

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

A model is proposed to describe the kinetics of solute segregation to partial dislocations in solid solutions of cold-rolled alloys. The case when half edge and half screw dislocations are present is considered. The model gives account of the kinetic behaviour observed in a deformed Cu-19 at% Al alloy where two unknown processes could be assessed during calorimetric isothermal experiments. The faster process corresponds to segregation to screw dissociated dislocations while the slower one corresponds to segregation to edge dissociated dislocations. Experimental activation energies, larger for edge dislocations, are close to that for pipe diffusion along the partials corrected by pinner binding energy terms. It is also predicted that segregation occurs faster as the dislocation density is increased. A quantitative comparison of experimental results with model predictions is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Cahn and R. G. Davies, Phil. Mag., 5 (1960) 119.

    Google Scholar 

  2. J. M. Popplewell and J. Crane, Metall. Trans., 2 (1971) 3411.

    CAS  Google Scholar 

  3. A. Varschavsky, Mater. Sci. Eng., 89 (1978) 118.

    Google Scholar 

  4. A. Varschavsky, J. Mater. Sci., 26 (1991) 3603.

    Article  CAS  Google Scholar 

  5. M. Z. Butt and Z. Rafi, J. Mater. Sci. Letts., 10 (1991) 309.

    Article  CAS  Google Scholar 

  6. A. Varschavsky and E. Donoso, Mater. Sci. Eng., 32 (1978) 65.

    Article  CAS  Google Scholar 

  7. E. Donoso and A. Varschavsky, Mater. Sci. Eng., 37 (1979) 151.

    Article  CAS  Google Scholar 

  8. A. Varschavsky and E. Donoso, Mater. Sci. Eng., 40 (1979) 119.

    Article  CAS  Google Scholar 

  9. S. Fan, K. Inai, S. Onaka and S. Miura, J. Soc. Mater. Sci. Jpn., 41 (1992) 607.

    Google Scholar 

  10. A. Varschavsky and E. Donoso, Res Mechanica, 3 (1981) 195.

    CAS  Google Scholar 

  11. M. Militzer, W. P. Sun and J. J. Jonas, Acta Metall. Mater., 42 (1994) 133.

    Article  CAS  Google Scholar 

  12. M. Z. Butt, Sci. Int., 2 (1990) 257.

    CAS  Google Scholar 

  13. F. R. N. Nabarro, Acta Metall. Mater., 38 (1990) 161.

    Article  CAS  Google Scholar 

  14. A. Varschavsky, Scr. Metall., 9 (1975) 391.

    Article  CAS  Google Scholar 

  15. L. P. Kubin, Y. Estrin and C. Perrier, Acta Metall. Mater., 40 (1992) 1037.

    Article  CAS  Google Scholar 

  16. C. P. Ling, P. G. McCormick and Y. Estrin, Acta Metall. Mater., 41 (1993) 3323.

    Article  CAS  Google Scholar 

  17. P. G. McCormick and P. Ling, Acta Metall. Mater., 43 (1995) 1969.

    Article  CAS  Google Scholar 

  18. Y. Brechet and Y. Estrin, Acta Metall. Mater., 43 (1995) 955.

    Article  CAS  Google Scholar 

  19. A. Varschavsky and E. Donoso, J. Thermal. Anal., 48 (1997) 1307.

    Article  Google Scholar 

  20. A. H. Cottrell and B. A. Bilby, Proc. R. Soc. Lond., B62 (1949) 229.

    Google Scholar 

  21. N. Louat, Scripta Metall., 15 (1981) 1167.

    Article  CAS  Google Scholar 

  22. A. Varschavsky and M. Pilleux, Mater. Letts., 17 (1993) 364.

    Article  CAS  Google Scholar 

  23. A. Varschavsky and E. Donoso, Mater. Sci. Eng., A145 (1991) 95.

    CAS  Google Scholar 

  24. A. Varschavsky and E. Donoso, Metall. Trans., 15A (1984) 1999.

    CAS  Google Scholar 

  25. N. Kuwano, Y. Tomokiyo, C. Kinoshita and T. Eguchi, Trans. Jpn. Inst. Met., 15 (1974) 338.

    Google Scholar 

  26. P. Kittl and E. Donoso, J. Mater. Sci., 16 (1981) 533.

    Article  CAS  Google Scholar 

  27. I. Dutta and D. L. Bourell, Acta Metall. Mater., 38 (1990) 2041.

    Article  CAS  Google Scholar 

  28. G. Veith, L. Trieb, W. Püschl and H. P. Aubauer, Phys. Stat. Sol., 27 (1975) 59.

    Article  CAS  Google Scholar 

  29. A. Varschavsky and E. Donoso, J. Mater. Sci., 21 (1986) 3873.

    Article  CAS  Google Scholar 

  30. J. Schlipf, Scripta Metall. Mater., 29 (1993) 287.

    Article  CAS  Google Scholar 

  31. F. Springer and Ch. Schwink, Scripta Metall. Mater., 25 (1991) 2739.

    Article  CAS  Google Scholar 

  32. F. R. Brotzen and A. Seeger, Acta Metall., 37 (1989) 2985.

    Article  CAS  Google Scholar 

  33. J. Schlipf, Scripta Metall. Mater., 31 (1994) 909.

    Article  CAS  Google Scholar 

  34. A. Kalk, A. Nortmann and Ch. Schwink, Phil. Mag. A, 72 (1995) 1239.

    Article  CAS  Google Scholar 

  35. M. A. Morris, T. Lipe and D. G. Morris, Scripta Mater., 34 (1996) 1337.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors would like to thank the Fondo de Desarrollo Científico y Tecnológico (FONDECYT) for financial support through Project 1950566, and the Institute de Investigaciones y Ensayes de Materiales (IDIEM), Facultad de Ciencias Físicas y Matemticas, Universidad de Chile, for the facilities provided for this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varschavsky, A., Donoso, E. Modelling the kinetics of solute segregation to partial dislocations for isothermal microcalorimetric evaluations. Journal of Thermal Analysis 50, 533–545 (1997). https://doi.org/10.1007/BF01979026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979026

Keywords

Navigation