Journal of thermal analysis

, Volume 48, Issue 1, pp 19–38 | Cite as

The high-low quartz inversion

Key to the petrogenesis of quartz-bearing rocks
  • W. Smykatz-Kloss
  • W. Klinke
Article

Abstract

The paper reviews studies on possible applications of the high-low quartz inversion in petrology. Since the first suggestions of Fenner and Tuttle, nearly fifty papers have dealt with the subject, including ten by the present authors. The detailed discussion of the preparative and instrumental factors which may influence the quartz inversion behaviour reveals that the DTA (DSC) runs have to be made under highly standardized conditions to permit measurement of the ‘material inherent factors’ (mainly crystal physical factors) which cause variations in shape and temperatures. The most striking variations in shape and temperatures of the inversion effect (e.g. including temperatures more than 70°C lower than the ‘textbook value’ of 573°C for the quartz inversion) are observed for microcrystalline quartz crystals. The literature and the authors' own investigation demonstrate that the most interesting field of application of the method is that of authigenic quartz formation in sediments and soils. The characterization of metamorphic quartz is more complicated. Four fields of study are chosen to demonstrate the possible application of the quartz inversion characterization for petrogenetic interpretations: (1) the differentiation between authigenic and inherited quartz crystals in sediments, (2) the characterization of the contact-metamorphic aureoles around granites, (3) special regional-metamorphic terrains and (4) (from a few so far unpublished studies) the differentiation between sedimentary and soil silcretes.

Keywords

chalcedony crystalline disorder DSC DTA high-low quartz inversion silcretes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. N. Fenner, Am. J. Sci. 4th Ser., 36 (1913) 331.Google Scholar
  2. 2.
    L. H. Berkelhamer, Rep. Invest. US Bur. Mines, 3763 (1944).Google Scholar
  3. 3.
    G. T. Faust, Am. Mineralogist, 33 (1948) 337.Google Scholar
  4. 4.
    O. F. Tuttle, Am. Mineralogist, 34 (1949) 723.Google Scholar
  5. 5.
    M. L. Keith and O. F. Tuttle, Bowen Vol., Am. J. Sci., 208 (1952).Google Scholar
  6. 6.
    K. Nagasawa, J. Earth Sci., Nagoya Univ., 1 (1953) 156.Google Scholar
  7. 7.
    O. F. Tuttle and M. L. Keith, Geol. Mag., 41 (1954) 1.Google Scholar
  8. 8.
    E. I. Panov, I. G. Muratov and B. K. Kasatov, Dokl. Akad. Nauk SSR, 175 (1967) 6 (in Russian).Google Scholar
  9. 9.
    J. Lameyre, C. Levy and J. Mergoil-Daniel, Bull. Soc. Fr. Mineral. Crystallogr., 91 (1968) 172.Google Scholar
  10. 10.
    W. Smykatz-Kloss, N. Jb. Mineral. Monatsh, (1969) 563.Google Scholar
  11. 11.
    W. Smykatz-Kloss, Contrib. Mineral. Petrol., 26 (1970) 20.CrossRefGoogle Scholar
  12. 12.
    W. Smykatz-Kloss, Thermal Anal. Proc. 1CTA III, Davos 1971, Vol. 3, Ed. H. G. Wiedemann, Birkhäuser Verlag, Basel, Stuttgart 1972, p. 637.Google Scholar
  13. 13.
    W. Smykatz-Kloss, Contrib. Mineral. Petrol., 36 (1972) 1.CrossRefGoogle Scholar
  14. 14.
    W. Smykatz-Kloss, Oberrhein. Geol. Abh., 21 (1972) 75.Google Scholar
  15. 15.
    W. Smykatz-Kloss, Differential Thermal Analysis. Application and Results in Mineralogy. Minerals and Rocks, Vol. 11. K. Springer-Verlag, Heidelberg 1974.Google Scholar
  16. 16.
    W. Smykatz-Kloss, J. Thermal Anal., 23 (1982) 15.CrossRefGoogle Scholar
  17. 17.
    G. S. M. Moore, Special Reprint from ICTAC-X (Hatfield, 1992).Google Scholar
  18. 18.
    G. S. M. Moore and H. E. Rose, Nature, 242 (1973) 187.Google Scholar
  19. 19.
    G. S. M. Moore, Phase Transitions, 7 (1986) 25.Google Scholar
  20. 20.
    G. S. M. Moore, Thermochim. Acta, 126 (1988) 365.CrossRefGoogle Scholar
  21. 21.
    U. Steinikc, D.-C. Uecker, K. Sigrist, W. Plötner and T. Köhler, Cryst. Res. Technol., 22 (1987) 1255.Google Scholar
  22. 22.
    P. Kresten, Linseis-J., 1 (1971) 6.Google Scholar
  23. 23.
    P. Kresten, Stockholm Contrib. in Geology, 23 (1971) 91.Google Scholar
  24. 24.
    R. H. S. Robertson, Scot. J. Sci., 1 (1973) 175.Google Scholar
  25. 25.
    A. Giret, J. Lameyre, C. Levy and C. Marion, C. R. Acad. Sc. Paris, 275 (1972) 161.Google Scholar
  26. 26.
    K. A. Rodgers and N. M. Howett, Thermochim. Acta, 87 (1985) 363.CrossRefGoogle Scholar
  27. 27.
    M. Lisk, K. A. Rodgers and P. R. L. Browne, Thermochim. Acta, 175 (1991) 293.CrossRefGoogle Scholar
  28. 28.
    W. Smykatz-Kloss and W. Klinke, J. Thermal. Anal., 42 (1994) 85.Google Scholar
  29. 29.
    H. G. Midgley, Geol. Mag., 88 (1951) 179.Google Scholar
  30. 30.
    I. McDowell and W. Vose, Nature, 170 (1952) 366.Google Scholar
  31. 31.
    O. W. Flörke, Chemie d. Erde, 22 (1962) 91.Google Scholar
  32. 32.
    W. A. Kneller, H. F. Kriege, E. L. Saxer, J. T. Wilbrand and T. J. Rohrbacher, The properties and recognition of deletrious cherts which occur in aggregates used by Ohio concrete products. Res. Found. Univ. Toledo, Ohio, Aggr. Res. Group Geol. Dept., 1968.Google Scholar
  33. 33.
    S. St. J. Warne, J. Inst. Fuel, 1970 (1970) 240.Google Scholar
  34. 34.
    P. Buurman and L. van der Plas, Geol. Mijnbouw, 50 (1971) 9.Google Scholar
  35. 35.
    R. C. Mackenzie and A. Milne, Min. Mag., 30 (1953) 178.Google Scholar
  36. 36.
    U. Hofmann and A. Rothe, Z. Anorg. Allg. Chemie, 357 (1968) 196.CrossRefGoogle Scholar
  37. 37.
    P. Bayliss, Nature, 201 (1964) 1019.Google Scholar
  38. 38.
    W. W. Wendlandt, Thermal Analysis, John Wiley & Sons, Chichester 1986.Google Scholar
  39. 39.
    P. Stahl, C. R. Acad. Sci. Paris, 232 (1951) 1669.Google Scholar
  40. 40.
    J. W. Dodd and K. H. Tonge, Thermal Methods, John Wiley & Sons, Chichester 1987.Google Scholar
  41. 41.
    G. Sabatier and J. Wyart, C. R. Acad. Fr. Sci. Paris, 236 (1954) 1053.Google Scholar
  42. 42.
    W. Smykatz-Kloss and R. Schulz, Contrib. Mineral. Petrol., 45 (1974) 15.CrossRefGoogle Scholar
  43. 43.
    K. Heide, Dynamische thermische Analysenmethoden, VEB Dt. Verlag Grundstoffindustrie 1979.Google Scholar
  44. 44.
    K. Lönvik and W. Smykatz-Kloss, Thermochim. Acta, 72 (1984) 159.CrossRefGoogle Scholar
  45. 45.
    K. A. Rodgers and N. M. Howett, N. Jb. Mineral. Abh. 159 (1988) 1.Google Scholar
  46. 46.
    M. Lisk, P. R. L. Browne and K. A. Rodgers, N. Jb. Min. Monatsh., 1991 (1991) H1, 538.Google Scholar
  47. 47.
    H. Joachim, Diss. Univ. Karlsruhe, Faculty of Biological and Earth Sciences, 1988.Google Scholar
  48. 48.
    W. Smykatz-Kloss, H. Joachim and J. Hagedorn, in press.Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • W. Smykatz-Kloss
    • 1
  • W. Klinke
    • 1
  1. 1.Mineralogical InstituteUniversity of KarlsruheKarlsruheGermany

Personalised recommendations