Algebra and Logic

, Volume 24, Issue 6, pp 477–485 | Cite as

Theory of hyperrings and hyperfields

  • Ch. G. Massouros
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Krasner, "Approximation des corps valués complets de caractéristique p≠o par ceux de caractéristique O," Colloque d'Algèbre Superieure (Bruxelles, Décembre 1956), CBRM, Bruxelles (1957).Google Scholar
  2. 2.
    M. Krasner, "Espaces ultramétriqueset nombres semi-réels," C.R. Acad. Sci.,219, (1944).Google Scholar
  3. 3.
    M. Krasner, "A class of hyperrings and hyperfields," Int. J. Math. Math. Sci.,6, No. 2, 307–312 (1983).Google Scholar
  4. 4.
    Ch. G. Massouros, "Methods of constructing hyperfields," Int. J. Math. Math. Sci. (to appear).Google Scholar
  5. 5.
    J. Mittas, "Hyperanneaux et certaines de leurs propriétés," C.R. Acad. Sci.,A269, 623–626 (1969).Google Scholar
  6. 6.
    J. Mittas, "Sur les hyperanneaux et les hypercorps," Math. Balkanica,3, 368–382 (1973).Google Scholar
  7. 7.
    J. Mittas, "Hypergroupes canoniques," Math. Balkanica,2, 165–179 (1972).Google Scholar
  8. 8.
    R. L. Roth, "Character and conjugacy class hypergroups of a finite group," Ann. Math. Pure Appl.,105, 295–311 (1975).Google Scholar
  9. 9.
    D. Stratigopoulos, "Hyperanneaux non commutatifs: hyperanneaux, hypercorps, hypermodules, hyperspaces vectoriels et leurs propriétés elementaires," C.R. Acad. Sci.,A269, 489–492 (1969).Google Scholar
  10. 10.
    D. Stratigopoulos, "Hyperanneaus non commutatifs: le radical d'un hyperanneasu, somme sous-directe des hyperanneaux, hyperanneaux artiniens et théorie des elements idempotents," C.R. Acad. Sci.,A269, 627–629 (1969).Google Scholar
  11. 11.
    D. Stratigopoulos, "Hyperanneaux non commutatifs: hyperanneaux artiniens, centralisateur d'un hypermodule et théorème de densité," C.R. Acad. Sci.,A269, 889–891 (1969).Google Scholar
  12. 12.
    D. Stratigopoulos, Hyperanneaus Artiniens, Thèse de doctorat de l'Université de Louvain, mimeographiée.Google Scholar
  13. 13.
    D. Stratigopoulos and Ch. G. Massouros, "On a class of fields," Math. Balkanica,12 (to appear).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Ch. G. Massouros

There are no affiliations available

Personalised recommendations