Advertisement

Algebra and Logic

, Volume 28, Issue 3, pp 163–182 | Cite as

Structure of finite subgroups of simple algebraic groups

  • A. V. Borovik
Article

Keywords

Mathematical Logic Algebraic Group Finite Subgroup Simple Algebraic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. Gorenstein, Finite Simple Groups: An Introduction to Their Classification [Russian translation], Mir, Moscow (1985).Google Scholar
  2. 2.
    M. Aschbacher, "On the maximal subgroups of the finite classical groups," Invent. Math.,76, No. 3, 469–514 (1984).Google Scholar
  3. 3.
    M. Suzuki, "On a class of doubly transitive groups," Ann. Math.,75, No. 1, 105–145 (1962).Google Scholar
  4. 4.
    V. M. Levchuk and Ya. N. Nuzhin, "On the structure of Ree groups," Algebra Logika,24, No. 1, 26–41 (1985).Google Scholar
  5. 5.
    P. B. Kleidman and M. W. Liebeck, "A survey of the maximal subgroups of the finite simple groups," Preprint, Univ. of Cambridge (1985).Google Scholar
  6. 6.
    R. Steinberg, "Endomorphisms of algebraic groups," Mem. Am. Math. Soc.,80 (1968).Google Scholar
  7. 7.
    R. Steinberg, Lectures on Chevalley Groups [Russian translation], Mir, Moscow (1975).Google Scholar
  8. 8.
    N. Burgoyne, R. Griess, and R. Lyons, "Maximal subgroups and automorphisms of Chevalley groups," Pac. J. Math.,71, No. 2, 365–403 (1977).Google Scholar
  9. 9.
    A. V. Alekseevskii, "On finite commutative Jordan subgroups of simple complex Lie groups," Funkts. Analiz Prilozh.,8, No. 4, 1–4 (1974).Google Scholar
  10. 10.
    A. V. Borovik, "Jordan subgroups of simple algebraic groups," Algebra Logika,28, No. 2, 144–159 (1989).Google Scholar
  11. 11.
    A. V. Alekseevskii, "Structure of maximal finite primitive subgroups of Lie groups," Funkts. Anal. Prilozh.,30, No. 5, 197–198 (1975).Google Scholar
  12. 12.
    J. Humphreys, Linear Algebraic Groups, Springer-Verlag (1975).Google Scholar
  13. 13.
    Seminar on Algebraic Groups [Russian translation], Mir, Moscow (1973).Google Scholar
  14. 14.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).Google Scholar
  15. 15.
    T. A. Springer and R. Steinberg, "Conjugacy classes of elements," in: Seminar on Algebraic groups [Russian translation], Mir, Moscow (1973), pp. 118–262.Google Scholar
  16. 16.
    R. Richardson, "Conjugacy classes in Lie algebras and algebraic groups," Ann. Math.,86, No. 1, 1–15 (1967).Google Scholar
  17. 17.
    C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience (1962).Google Scholar
  18. 18.
    É. B. Vinberg, "The Weyl group of a graded Lie algebra," Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 3, 488–526 (1976).Google Scholar
  19. 19.
    N. Iwahori, "Centralizers of involutions in finite Chevalley groups," in: Seminar on Algebraic Groups [Russian translation], Mir, Moscow (1973), pp. 263–287.Google Scholar
  20. 20.
    H. Azad, "Semi-simple elements of order 3 in finite Chevalley Groups," J. Algebra,56, No. 2, 481–498 (1979).Google Scholar
  21. 21.
    A. Borel and J. Tits, "Éléments unipotents et sousgroupes paraboliques de groupes réductifs. I," Invent. Math.,12, No. 1, 95–104 (1971).Google Scholar
  22. 22.
    K. S. Braun, Cohomology of Groups [in Russian], Nauka, Moscow (1987).Google Scholar
  23. 23.
    A. Borel, Linear Algebraic Groups [Russian translation], Mir, Moscow (1982).Google Scholar
  24. 24.
    M. Aschbacher and G. M. Seitz, "Involutions in Chevalley groups over fields of even order," Nagoya Math. J.,63, 1–91 (1976); Corrections:72, 135–136 (1978).Google Scholar
  25. 25.
    R. Steinberg, "Torsion in reductive groups," Adv. Math.,15, No. 1, 63–92 (1975).Google Scholar
  26. 26.
    L. Martino and A. Wagner, "The irreducible subgroups of PSL(V5, q), where q is odd," Result. Math.,2, No. 1, 54–61 (1978).Google Scholar
  27. 27.
    A. E. Zalesskii, "Classification of finite linear groups of degree 5 over a field of characteristic different from 0, 2, 3, 5," Dokl. Akad. Nauk BSSR,20, No. 9, 773–775 (1976).Google Scholar
  28. 28.
    A. E. Zalesskii and I. D. Suprunenko, "Classification of finite irreducible linear groups of degree 4 over a field of characteristic p > 3," Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 9–15 (1978); Correction, No. 3, 136 (1979).Google Scholar
  29. 29.
    I. D. Suprunenko, "Finite irreducible groups of degree 4 over fields of characteristic 3 or 5," Izv. Akad. BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 16–22 (1981).Google Scholar
  30. 30.
    D. M. Bloom, "The subgroups of PSL(3, q) for odd q," Trans. Amer. Math. Soc.,127, No. 1, 150–178 (1967).Google Scholar
  31. 31.
    S. A. Syskin, "Finite groups with primary centralizers of four-subgroups," Izv. Akad. Nauk SSSR, Ser. Mat.,42, No. 5, 1132–1150 (1978).Google Scholar
  32. 32.
    I. Schur, "Über die Darstellung der symmetrischen und der alternierenden Gruppen durch gebrochene lineare Substitutionen," J. Reine Angew. Math.,139, 155–250 (1911).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. V. Borovik

There are no affiliations available

Personalised recommendations