Netherlands Journal of Plant Pathology

, Volume 74, Supplement 1, pp 25–36 | Cite as

Protein synthesis by uredospores of the bean rust fungus

  • R. C. Staples


Ribosomes were isolated from dormant and germinated uredospores of the bean rust fungus and found to have sedimentation constants (S20, w) of 82.3. A supernatant solution of activating enzymes prepared from uredospores catalyzed amino acid incorporation by ribosomes. A small proportion of the ribosomes was associated in ribonuclease sensitive clusters. In the absence of added messenger RNA, a large proportion of the amino acid incorporation was carried out by these polysomes, which had sedimentation coefficients at least as high as 204 S. Presence of messenger RNA in spores is inferred from the fact that polysomes are present and that RNA preparations from spores at various stages of germination have template activity in an assay system prepared fromEscherichia coli.


Uit rustende en gekiemde uredosporen van de boneroest,Uromyces appendiculatus (Pers.) Ung., (syn.U. phaseoli (Pers.) Wint.) werden ribosomen geïsoleerd met een sedimentatieconstante (S20,w) van 82.3. Incorporatie van aminozuren door de ribosomen werd gekatalyseerd door een oplossing van activerende enzymen, verkregen uit de uredosporen. Een klein deel van de ribosomen kwam voor in polysoomstructuren, die gevoelig waren voor ribonuclease. Wanneer geen boodschapper-RNA werd toegevoegd, was de aminozuur-incorporende activiteit grotendeels geassocieerd met deze polysomen, die sedimentatieconstanten hadden van tenminste 204 S. RNA, geïsoleerd uit sporen in verschillende stadia van de kieming, had boodschapperactiviteit, zoals bleek bij toetsing in een celvrij aminozuur-incorporerend systeem uitEscherichia coli. Hieruit en uit het feit, dat polysomen aanwezig waren, kan tot de aanwezigheid van boodschapper-RNA in de uredosporen geconcludeerd worden.


Enzyme Sedimentation Germinate Protein Synthesis Assay System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. App, A. A. and Gerosa, M. M. 1966. A soluble fraction requirement in the transfer reaction of protein synthesis by rice embryo ribosomes. Pl. Physiol., Lancaster. 41: 1420–1424.Google Scholar
  2. Bonner, J. and Widholm, J., 1967. Molecular complementarity between nuclear DNA and organspecific chromosomal RNA. Proc. natn. Acad. Sci. U.S.A. 57: 1379–1385.Google Scholar
  3. Burkard, G., Weil, J.-H., et Ebel, J.-P., 1965. Mis en évidence d'un effet inhibiteur des polyphosphates sur l'activité acceptrice de l'acide ribonucléique soluble de levure Bull. Soc. Chim. biol. 47: 561–572.PubMedGoogle Scholar
  4. Click, R. E. and Hackett D. P., 1966. The isolation of ribonucleic acid from plant bacterial or animal cells. Biochim. biophys. Acta 129: 74–84.PubMedGoogle Scholar
  5. Dietz, G. W., Reid, B. R. and Simpson, M.V., 1965. Ribosomes. A study of active and sluggish preparations. Biochemistry, N.Y. 4: 2340–2350.Google Scholar
  6. Ingle, J., Key, J. L. and Holm, R. E., 1965. Demonstration and characterization of a DNA-like RNA in excised plant tissue. J. molec. Biol. 11: 730–746.PubMedGoogle Scholar
  7. Jacob, F. and Monod, J., 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3: 318–356.PubMedGoogle Scholar
  8. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275.PubMedGoogle Scholar
  9. Mandell, J. D. and Hershey, A. D. 1960. A fractionating column for analysis of nucleic acids. Analyt. Biochem 1: 66–77.CrossRefPubMedGoogle Scholar
  10. Marcus, A. and Feeley, J., 1966. Ribosome activation and polysome formation in vitro: requirement for ATP. proc. natn. Acad. Sci. U.S.A. 56: 1770–1777.Google Scholar
  11. Nirenberg, M. W., 1963. Cell-free protein synthesis directed by messenger RNA Meth. Enzym. 6: 17–23.CrossRefGoogle Scholar
  12. Reisener, H-J., 1967. Untersuchungen über den Aminosäure-und Proteinstoffwechsel der Uredosporen des Weizenrostes. Arch. Microbiol 55: 382–397.Google Scholar
  13. Reisener, H-J. und Jäger, K., 1967. Untersuchungen über die quantitative Bedeutung einiger Stoffwechselwege in den Uredosporen von Puccinia graminis var tritici. Planta 72: 265–283.CrossRefGoogle Scholar
  14. Shaw, M. and Manocha, M. S., 1965. The physiology of host-parasite relations XV. Fine structure in rust-infected wheat leaves. Can. J. Bot. 43: 1285–1292.Google Scholar
  15. Siekevitz, P. and Palade, G. E., 1960. A cytochemical study on the pancreas of the guinea, pig. VI. Release of enzyms and ribonuclic acid from ribonucleoprotein particles. J. biophys. biochem. Cytol. 7: 631–644.PubMedGoogle Scholar
  16. Sonnenberg, B. P. and Zubay, G., 1965. Nucleohistone as a primer for RNA synthesis Proc. natn. Acad. Sci. U.S.A. 54: 415–420.Google Scholar
  17. Staples, R. C. and Bedigian, D., 1967. Preparation of an amino acid incorporation system from uredospores of the bean rust fungus. Contr. Boyce thompson Inst. Pl. Res. 23: 345–347.Google Scholar
  18. Staples, R.C. and Ledbtter, M. C., 1958. A study by microautoradiography of the distribution of tritium-labeled glycine in rusted Pinto bean leaves. Contr. Boyce Thompson Inst. Pl. Res. 19: 349–354.Google Scholar
  19. Staples, R. C. and Stahmann, M. A., 1964. Changes in proteins and several enzymes in susceptible bean laves after infection by the bean rust fungus. Phytopathology 54: 760–764.Google Scholar
  20. Staples, R. C., Bdigian, D. and Williams, P. H., 1968. Evidence for polysomes in extracts of bean rust uredospores. Phytopathology 58: 151–154.Google Scholar
  21. Staples, R. C., App, A. A., McCarthy, W. J. and Gerosa, M. M., 1966. Some properties of ribosomes from uredospores of the bean rust fungus. Contr. Boyce Thompson. Inst. Pl. Res. 23: 159–164.Google Scholar
  22. Staples, R. C., Syamananda R., Kao, V. and Block, R. J., 1962. Comparative biochemistry of obligately parasitic and saprophytic fungi. II. Assimilation of14C-labeled substrates by germinating spores. Contr. Boyce Thompson Inst. Pl. Res. 21: 345–362.Google Scholar
  23. Stavy, L. and Gross, P. R. 1967. The protein-syntetic lesion in unfertilized eggs. Proc. natn. Acad. Sci. U.S.A. 57: 735–742.Google Scholar
  24. Steere, R. L., 1964. Electron microscopy of plant viruses. Bot. Rev. 30: 629–666.Google Scholar
  25. Sumere C. F. van, Sumere-De Preter, C. van and Ledingham, G.A., 1957. Cell-wall-splitting enzymes of Puccinia graminis var. tritici. Can. J. Microbiol 3: 761–770.PubMedGoogle Scholar
  26. Taylor, M. M. and Storck, R., 1964. Uniqueness of bacterial ribosomes. Proc. natn. Acad. Sci. U.S.A. 52: 958–965.Google Scholar
  27. Wang, D. and Mancini, D., 1966. Studies on ribonucleic acid-polyphosphate in plants. Biochim. biophys. Acta 129: 231–239.Google Scholar
  28. Wynn, W. K., Staples R. C., Strouse, B. and Gajdusek, C., 1966. Physiology of uredospores during storage. Contr. Boyce Thompson Inst. Pl. Res. 23: 229–242.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1968

Authors and Affiliations

  • R. C. Staples
    • 1
  1. 1.Boyce Thompson Institute for Plant Research, Inc.YonkersU.S.A.

Personalised recommendations