Minimal- und Primmodelle

  • Gebhard Fuhrken
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    E. Engeler:Äquivalenzklassen von n-Tupeln. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, Bd. 5 (1959), 340–345.Google Scholar
  2. [2]
    G. Fuhrken:On minimal models of complete theories. (Abstract) Notices of the American Mathematical Society, vol. 9 (1962), p. 146.Google Scholar
  3. [3]
    —:First-order languages with a generalized quantifier. Minimal models of first-order theories. Doctoral Dissertation, University of California in Berkeley, June 1962.Google Scholar
  4. [4]
    M. Morley and R. L. Vaught:Homogeneous universal models. Mathematica Scandinavica. vol. 11 (1962) 37–57.Google Scholar
  5. [5]
    H. Putnam:Decidability and essential undecidability. Journal of symbolic Logic, vol. 22 (1957) 39–54.Google Scholar
  6. [6]
    A. Robinson:Complete theories. Amsterdam 1956.Google Scholar
  7. [7]
    A. Tarski:Contributions to the theory of models. Indagationes Mathematicae, vol. 16 (1954), 572–588.Google Scholar
  8. [8]
    — and R. L. Vaught:Arithmetical extensions of relational systems. Compositio Mathematica, vol. 13 (1957), 81–102.Google Scholar
  9. [9]
    R. L. Vaught:Denumerable models of complete theories. Proc. of the Symposion on the Foundations of Mathematics, Warsaw 1959, 303–321.Google Scholar

Copyright information

© W. Kohlhammer Verlag 1966

Authors and Affiliations

  • Gebhard Fuhrken
    • 1
  1. 1.Minneapolis

Personalised recommendations