Netherlands Journal of Plant Pathology

, Volume 81, Issue 4, pp 125–137 | Cite as

Comparative abilities of fungi pathogenic and nonpathogenic to bean (Phaseolus vulgaris) to metabolize phaseollin

  • J. Van den Heuvel
  • Judy A. Glazener


The abilities of fungi pathogenic and nonpathogenic to bean (Phaseolus vulgaris) to metabolize the phytoalexin phaseollin were compared when grown in shake cultures containing 12 to 15 μg phaseollin/ml. Under these conditions phaseollin was metabolized by five out of seven pathogens and by three out of five nonpathogens.

Disappearance of phaseollin was accompanied by the appearance of metabolic products in cultures ofFusarium solani f. sp.phaseoli, Colletotrichum lindemuthianum, Botrytis cinerea andCladosporium herbarum. The nonpathogenC. herbarum detoxified phaseollin to 1a-hydroxyphaseollone as rapidly as the pathogenF. solani f.sp.phaseoli. Phaseollin was converted to 6a-hydroxyphaseollin by the pathogensB. cinerea andC. lindemuthianum, and this product was further metabolized by the latter fungus. 6a-Hydroxyphaseollin was less fungitoxic toB. cinerea. C. lindemuthianum was equally sensitive to both compounds.

Phaseollin was not metabolized by the pathogensFusarium oxysporum f. sp.phaseoli andThielaviopsis basicola.


Een vergelijkend onderzoek werd verricht naar het vermogen van schimmels, al dan niet pathogeen voor boon (Phaseolus vulgaris), om het fytoalexine phaseolline om te zetten.

In schudculturen waaraan 12 tot 15 μg phaseolline/ml was toegevoegd, kon phaseolline worden omgezet door vijf van de zeven onderzochte pathogenen en door drie van de vijf getoetste niet-pathogenen (Fig. 1, 2 en 3).

Het verdwijnen van phaseolline ging gepaard met het verschijnen van omzettings-produkten in culturen vanFusarium solani f. sp.phaseoli, Colletotrichum lindemuthianum, Botrytis cinerea enCladosporium herbarum. De niet-pathogene schimmelC. herbarum detoxificeerde phaseolline tot 1a-hydroxyphaseollon even snel als het pathogeenF. solani f. sp.phaseoli. Phaseolline werd omgezet tot 6a-hydroxyphaseolline door de pathogenenB. cinerea enC. lindemuthianum en dit produkt werd doorC. lindemuthianum weer verder omgezet tot een verwante verbinding. 6a-Hydroxyphaseolline was minder fungitoxisch dan phaseolline voorB. cinerea, maar even fungitoxisch voorC. lindemuthianum (Tabel 1).

Phaseolline werd niet omgezet door de bonepathogenenFusarium oxysporum f. sp.phaseoli enThielaviopsis basicola.

Geconcludeerd wordt dat er geen direkt verband bestaat tussen het vermogen van een schimmel tot omzetting of detoxificatie van phaseolline in vitro en zijn pathogeniteit voor boon.


Plant Pathology Metabolic Product Botrytis Cinerea Shake Culture Colletotrichum Lindemuthianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, J. A., 1974. The relationship between symptom expression and phytoalexin concentration in hypocotyls ofPhaseolus vulgaris infected withColletotrichum lindemuthianum. Physiol. Pl. Path. 4: 477–488.Google Scholar
  2. Burden, R. S., Bailey, J. A. & Vincent, G. G., 1974. Metabolism of phaseollin byColletotrichum lindemuthianum. Phytochemistry 13: 1789–1791.CrossRefGoogle Scholar
  3. Christenson, J. A. & Hadwiger, L. A., 1973. Induction of pisatin in the pea foot region by pathogenic and nonpathogenic clones ofFusarium solani. Phytopathology 63: 784–790.Google Scholar
  4. Cruickshank, I. A. M., Biggs, D. R., Perrin, Dawn R. & Whittle, C. P., 1974. Phaseollin and phaseollidin relationships in infection-droplets on endocarp ofPhaseolus vulgaris. Physiol. Pl. Path. 4: 261–276.Google Scholar
  5. Cruickshank, I. A. M. & Perrin, Dawn R., 1971. Studies on phytoalexins. XI. The induction, antimicrobial spectrum and chemical assay of phaseollin. Phytopath. Z. 70: 209–229.Google Scholar
  6. Heath, Michèle C. & Higgins, Verna J., 1973. In vitro and in vivo conversion of phaseollin and pisatin by an alfalfa pathogenStemphylium botryosum. Physiol. Pl. Path. 3: 107–120.Google Scholar
  7. Hess, S. L., Hadwiger, L. A. & Schwochau, M. E., 1971. Studies on biosynthesis of phaseollin in excised pods ofPhaseolus vulgaris. Phytopathology 61: 79–82.Google Scholar
  8. Heuvel, J. van den, 1970a. The influence of light and dark on attack of bean leaves byAlternaria zinniae. Neth. J. Pl. Path. 76: 192–195.Google Scholar
  9. Heuvel, J. van den, 1970b. Antagonistic effects of epiphytic microorganisms on infection of dwarf bean leaves byAlternaria zinniae. Thesis. University Utrecht. 84 pp. Meded. Pytopath. Lab. Willie Commelin Scholten No. 84.Google Scholar
  10. Heuvel, J. van den & VanEtten, H. D., 1973. Detoxification of phaseollin byFusarium solani f. sp.phaseoli. Physiol. Pl. Path. 3: 327–339.Google Scholar
  11. Heuvel, J. van den, VanEtten, H. D., Serum, J. W., Coffen, D. L. & Williams, T. H., 1974. Identification of 1a-hydroxyphaseollone, a phaseollin metabolite produced byFusarium solani. Phytochemistry 13: 1129–1131.CrossRefGoogle Scholar
  12. Higgins, Verna J. & Millar, R. L., 1970. Degradation of alfalfa phytoalexin byStemphylium loti andColletotrichum phomoides. Phytopathology 60: 269–271.Google Scholar
  13. Higgins, Verna J., Stoessl, A. & Heath, Michèle C., 1974. Conversion of phaseollin to phaseollinisoflavan byStemphylium botryosum. Phytopathology 64: 105–107.Google Scholar
  14. King, F. E., King, T. J. & Manning, L. C., 1957. An investigation of the Gibbs reaction and its bearing on the constitution of jacareubin. J. chem. Soc. 1957, C: 563–566.Google Scholar
  15. Mansfield, J. W. & Widdowson, D. A., 1973. The metabolism of wyerone acid (a phytoalexin fromVicia faba L.) byBotrytis fabae andB. cinerea. Physiol. Pl. Path. 3: 393–404.Google Scholar
  16. Mathre, D. E. & Ravenscroft, A. V., 1966. Physiology of germination of chlamydospores and endoconidia ofThielaviopsis basicola. Phytopathology 56: 337–342.Google Scholar
  17. Nonaka, F., 1967. Inactivation of pisatin by pathogenic fungi. Agric. Bull. Saga Univ. 24: 109–121.Google Scholar
  18. Pridham, J. B., 1959. Paper electrophoresis and paper chromatography, of phenolic compounds. J. Chromat. 2: 605–611.CrossRefGoogle Scholar
  19. Sakuma, T. & Millar, R. L., 1972. Relative abilities of pathogens and nonpathogens of alfalfa to induce production of and degrade medicarpin. Phytopathology 62: 499 (Abstr.).Google Scholar
  20. Sims, J. J., Keen, N. T. & Honwad, V. K., 1972. Hydroxyphaseollin, an induced antifungal compound from soybeans. Phytochemistry 11: 827–828.CrossRefGoogle Scholar
  21. Stoessl, A., Unwin, C. H. & Ward, E. W. B., 1973. Postinfectional fungus inhibitors from plants: fungal oxidation of capsidiol in pepper fruit. Phytopathology 63: 1225–1231.Google Scholar
  22. VanEtten, H. D., 1973. Differential sensitivity of fungi to pisatin and to phaseollin. Phytopathology 63: 1477–1482.Google Scholar
  23. VanEtten, H. D. & Bateman, D. F., 1970. Isolation of phaseollin fromRhizoctonia-infected bean tissue. Phytopathology 60: 385–386.Google Scholar
  24. VanEtten, H. D. & Smith, D. A., 1975. Accumulation of antifungal isoflavonoids and 1a-hydroxyphaseollone, a phaseollin metabolite, in bean tissue infected withFusarium solani f. sp.phaseoli. Physiol. Pl. Path. 5: 225–237.Google Scholar
  25. Wit-Elshove, Annemarie de, 1969. The role of pisatin in the resistance of pea plants — some further experiments on the breakdown of pisatin. Neth. J. Pl. Path. 75: 164–168.Google Scholar
  26. Wit-Elshove, Annemarie de & Fuchs, A., 1971. The influence of the carbohydrate source on pisatin breakdown by fungi pathogenic to pea (Pisum sativum). Physiol. Pl. Path. 1: 17–24.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1975

Authors and Affiliations

  • J. Van den Heuvel
    • 1
  • Judy A. Glazener
    • 1
  1. 1.Phytopathological Laboratory ‘Willie Commelin Scholten’Baarnthe Netherlands

Personalised recommendations