Rheologica Acta

, Volume 6, Issue 3, pp 209–222 | Cite as

Viscous properties of polymer melts and elastomers exemplified by ethylene-propylene copolymer

  • G. V. Vinogradov
  • L. I. Ivanova
Article

Summary

The copolymer of ethylene and propylene possesses a sufficiently high thermo-oxidative resistance, making it possible to study its viscous properties, determine the appearance of elastic turbulence and wall slippage and to measure the rate of the latter over a wide interval of temperatures ranging from room temperature to 260 °C.

At low shear stresses and rates the copolymer behaves like aNewtonian liquid with a viscosity of about 108 poise at room temperatures.

Elastic turbulence and wall slippage are displayed in sharp form when the viscosity of the copolymer is lowered to its critical value, which depends very little on the temperature and may be accepted as averaging 2.2×104 poise. The corresponding critical shear stress values vary about 10-fold. The criteria of appearance of elastic turbulence suggested in (12, 14) do not agree with experimental data. The entrance losses during the flow of the copolymer through capillaries are low right until elastic turbulence sets in, after which it becomes practically impossible to measure them by the method of capillaries of different length. The average wall slippage rate values of the copolymer at shear stresses above 106 dyne/cm2 amount to tens of cm/sec. They increase very abruptly with rising temperature.

The temperature dependence of the viscosity and the dynamic characteristics of the copolymer indicate that it has a phase transition at temperatures of about 100–120 °C, which must be related to melting of blocks contained in the copolymer macromolecules, having a structure close to that of high-pressure polyethylene. This shows that the rheological method of studying block-type polymer and grafted polymers is promising.

Keywords

Phase Transition Shear Stress Slippage Rate Wide Interval Critical Shear Stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Vinogradov, G. V. andN. V. Prozorovskaya, Plasticheskie Massy5, 50 (1964).Google Scholar
  2. 2).
    Vinogradov, G. V. andN. V. Prozorovskaya, Rheol. Acta3, 156 (1964).Google Scholar
  3. 3).
    Ivanova-Choomakova, L. V. andP. A. Rebinder, Kolloidniy Zhurnal18, 540 (1956).Google Scholar
  4. 4).
    Vinogradov, G. V. andJ. G. Janovski, Zavodsk. Lab.31, 115 (1965).Google Scholar
  5. 5).
    Vinogradov, G. V. andI. M. Belkin, J. Polymer Sci.3A, 917 (1956).Google Scholar
  6. 6).
    Vinogradov, G. V. andA. Ja. Malkin, J. Polymer Sci.4, Part A-2, 135 (1966).CrossRefGoogle Scholar
  7. 7).
    Jun, Vi, et al., SPE Transaction4, 4 (Oct), 295–305 (1964).Google Scholar
  8. 8).
    Vinogradov, G. V. andV. N. Manin, Kolloid-Z. u. Z. Polymere201, 2 93–98 (1965).CrossRefGoogle Scholar
  9. 9).
    Vinogradov, G. V., A. Ja. Malkin andA. I. Leonov, Koll.-Z. u. Z. Polymere191, 25 (1963).CrossRefGoogle Scholar
  10. 10).
    Bagley, E. B., Trans. Soc. Rheol.,5, 354 (1961).Google Scholar
  11. 11).
    Tordella, J.-P., J. Polymer Sci.7, 215 (1963).Google Scholar
  12. 12).
    Bartos, O., J. Appl. Phys.35, 9, 2767 (1964).CrossRefGoogle Scholar
  13. 13).
    Malkin, A. Ja. andG. V. Vinogradov, J. Appl. Polymer Sci.10, 767 (1966).CrossRefGoogle Scholar
  14. 14).
    Overdiep, W. S. andD. W. Van Krevelen, J. Appl. Polymer Sci.9, 2779 (1965).CrossRefGoogle Scholar
  15. 15).
    Metzner, A. B., Ind. Eng. Chem.50, 1577 (1958).CrossRefGoogle Scholar
  16. 16).
    Hutton, J. F., Proc. Royal Soc.287, 222 (1965).Google Scholar
  17. 17).
    Mooney, M., J. Rheology2, 210 (1931).Google Scholar
  18. 18).
    Vinogradov, G. V. andV. V. Sinitsyn, Dokl. Akad. Nauk. SSSR86, 573 (1952).Google Scholar
  19. 19).
    Sinitsyn, V. V. andG. V. Vinogradov, Dokl. Akad. Nauk SSSR91, 323 (1953).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1967

Authors and Affiliations

  • G. V. Vinogradov
    • 1
  • L. I. Ivanova
    • 1
  1. 1.The Institute of Petrochemical Synthesis of the Academy of Sciences of the USSRMoscowUSSR

Personalised recommendations