Rheologica Acta

, Volume 8, Issue 4, pp 448–456 | Cite as

Flow of granular solids through horizontal orifices

  • M. Ahmad
  • N. Pilpel
Originals

Summary

A study has been made of the flow of materials which differ considerably in their physical properties in the size range 0.005 to about 0.150 cm. They include glass beads, lactose, carboxymethylcellulose, magnesia and sand.

Employing a term for particle shape, an equation has been developed which enables the flow rates to be predicted with an accuracy of about ± 7%. This is
$$\begin{gathered} D_0 = (3.24 + 1.50D_p - 0.57f) \hfill \\ \times \left( {\frac{{4w}}{{60\pi \varrho \sqrt g }}} \right)^{\frac{1}{{4.23 + 0.58\log D_p - 0.22f}}} cm, \hfill \\ \end{gathered} $$
whereD0 is the orifice diameter in cm,Dp the particle diameter in cm.ϱ the particle density in g/ml,w the flow rate in g/min,g is 981 cm sec−2 andf is a shape factor.

Keywords

Polymer Magnesia Lactose Size Range Particle Diameter 
Do

Diameter of orifice cm

Dp

Diameter of particle cm

Dc

Diameter of tube cm

Ke

“Shape” coefficient

C

“Shape” coefficient

H

Head of material in tube cm

n

A function of particle properties

A

A function of particle properties

w

Flow rate g/min

f

“Shape” factor

ϱ

Particle density g/ml

g

Acceleration due to gravity cm/sec2

L

Length of particles cm

B

Breadth of particle cm

T

Thickness of particle cm

N

Elongation ratio

m

Flatness ratio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Deming, W. E., A. L. Mehring, Indust. Eng. Chem.21, 661 (1929).CrossRefGoogle Scholar
  2. 2).
    Bingham, E. C., R. W. Wikoff, J. Rheol.2, 395 (1931).Google Scholar
  3. 3).
    Newton, R. H., G. S. Dunham, T. P. Simpson, Trans. Amer. Inst. Chem. Eng.41, 215 (1945).Google Scholar
  4. 4).
    Franklin, F. C., L. N. Johanson, Chem. Eng. Sci.4, 119 (1955).CrossRefGoogle Scholar
  5. 5).
    Luk'yanov, P. I., I. V. Gusev, N. I. Nikitina, Khimiya, Tekhnol. Topl. Masel.5, 45 (1960).Google Scholar
  6. 6).
    Ciborowski, J., M. Badzynshi, Chemia, Stosow7, 289 (1963).Google Scholar
  7. 7).
    Beverloo, W. A., H. A. Leinger, Van de Velde, Chem. Eng. Sci.15, 260 (1961).CrossRefGoogle Scholar
  8. 8).
    Rausch, J. M., Ph. D. Thesis (Princeton Univ. 1949).Google Scholar
  9. 9).
    Rose, H. E., T. Tanaka, The Engineer.208, 465 (1959).Google Scholar
  10. 10).
    Brown, R. L., J. C. Richards, Trans. Inst. Chem. Eng.37, 108 (1959).38, 243 (1960).Google Scholar
  11. 11).
    McDougall, I. R. &A. C. Evans, Rheol. Acta.4, 218 (1965).Google Scholar
  12. 12).
    Fowler, R. T., J. R. Glastonbury, Chem. Eng. Sci.10, 150 (1959).CrossRefGoogle Scholar
  13. 13).
    Takahashi, H., Bull. Inst. Phys. Chem. Res. Japan12, 984 (1933).Google Scholar
  14. 14).
    Harmens, A., Chem. Eng. Sci.18, 297 (1963).CrossRefGoogle Scholar
  15. 15).
    Brown, R. L., Nature191, 458 (1961).Google Scholar
  16. 16).
    Jones, T. M., N. Pilpel, J. Pharm. Pharmac.18, 81, 429 (1966).Google Scholar
  17. 17).
    Ahmad, M., N. Pilpel, Manf. Chem.38 (1), 37 (1967).Google Scholar
  18. 18).
    Heywood, H., J. Imp. Coll. Chem. Eng. Soc.8, 25 (1954).Google Scholar
  19. 19).
    Treasure, C. R. G., The Storage and Recovery of Particulate Solids. Chap. 5: 2 (London 1966).Google Scholar
  20. 20).
    Ketchum, M. S., Walls, Bins and Grain Elevators (New York 1911).Google Scholar
  21. 21).
    Wieghardt, K., Ing. Arch.20, 109 (1952).CrossRefGoogle Scholar
  22. 22).
    Delaplaine, J. W., J. Amer. Inst. Chem. Eng.2, 127 (1956).Google Scholar
  23. 23).
    Harwood, C. F. andN. Pilpel, Chem. & Process Eng.49, 92 (1968).Google Scholar
  24. 24).
    Eirich, F. R. ed., Rheology — Theory & Applications. Vols. 1–3 (New York 1956–60).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1969

Authors and Affiliations

  • M. Ahmad
    • 1
  • N. Pilpel
    • 1
  1. 1.Department of Pharmacy, Chelsea College of ScienceUniversity of LondonEngland

Personalised recommendations