, Volume 42, Issue 1, pp 37–39 | Cite as

Myelin changes in the rats CNS following intraventricular injection of serum

  • G. Konat
  • N. H. Diemer
  • H. Offner
Short Communications Biochemistry and Biophysics, Metabolism, Neurobiology, Pharmacology


Normal human or rat serum administered by intraventricular injection induced demonstrable changes in the rat CNS myelin as seen from an increased recovery of dissociated myelin (DM), i.e. a myelin-related low density membrane fragments, from the tissue homogenates. The yield of DM reached a maximum on the third postinjection day and returned to the control level by day 5. In spite of the increased recovery of DM, no physico-chemical alternations in myelin isolates and no histological abnormalities in the tissue could be detected. The production of DM seems to be a sensitive index of serum-induced alteration of the myelin sheath.

Key words

Serum intrathecal injection CNS dissociated myelin demyelination multiple sclerosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.
    Davison, A. N., Biochem. Soc. Trans.6 (1978) 443.PubMedGoogle Scholar
  2. 4.
    Aita, J. F., Bennet, D., Anderson, R., and Ziter, F., Neurology28, (1978) 251.PubMedGoogle Scholar
  3. 5.
    Lebow, S., Anderson, D., Mestri, A., and Larsson, D., Archs Neurol.35 (1978) 435.Google Scholar
  4. 6.
    Konat, G., and Offner, H., Neurochem. Int.4 (1982) 143.CrossRefGoogle Scholar
  5. 7.
    Offner, H., and Konat, G., Neurochem. Int.5 (1982) 45.CrossRefGoogle Scholar
  6. 8.
    Pellegrino, L. J., Pellegrino, A. S., and Cushman, A. J., A stereotaxic atlas of the rat brain, Plenum Press, New York and London 1979.Google Scholar
  7. 9.
    Laemmli, U. K., Nature227 (1970) 680.PubMedGoogle Scholar
  8. 10.
    Greenfield, S., Weise, M. J., Gantt, G., Hogan, E. L., and Brostoff, S. W., J. Neurochem.39 (1982) 1278.PubMedGoogle Scholar
  9. 11.
    Williams, R. M., Krakowka, S., and Koestner, A., Acta neuropath.50 (1980) 1.CrossRefPubMedGoogle Scholar
  10. 12.
    Lassmann, H., Kitz, K., and Wisniewski, H. M., Acta neuropath. (Berl.)55 (1981) 297.CrossRefGoogle Scholar
  11. 13.
    Smith, M. E., J. Neurochem.21 (1973) 357.PubMedGoogle Scholar
  12. 14.
    Matthieu, J.-M., Zimmerman, A. W., Webster, H. de F., Ulsamer, A. G., Brady, R. O., and Quarles, R. H., Exp. Neurol.45 (1974) 558.CrossRefPubMedGoogle Scholar
  13. 15.
    Cammer, A. D., Horrocks, L. A., and Yashon, D., Brain Res.98 (1975) 547.CrossRefPubMedGoogle Scholar
  14. 16.
    Toews, A. D., Horrocks, L. A., and Yashon, D., Trans. Am. Soc. Neurochem.6 (1975) 209.Google Scholar
  15. 17.
    Bornstein, M. B., and Appel, H., Ann. N.Y. Acad. Sci.122 (1965) 280.PubMedGoogle Scholar
  16. 18.
    Lumsden, C. E., Brain Res.28 (1971) 365.CrossRefPubMedGoogle Scholar
  17. 19.
    Konat, G., Offner, H., and Zeeberg, J., J. neurol. Sci.60 (1983) 363.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • G. Konat
    • 2
  • N. H. Diemer
    • 1
  • H. Offner
    • 1
  1. 1.Institute of Neuropathology and Institute of Medical PhysiologyUniversity of CopenhagenCopenhagen(Denmark)
  2. 2.Department of NeurologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations