Skip to main content
Log in

Incremental topological flipping works for regular triangulations

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A set ofn weighted points in general position in ℝd defines a unique regular triangulation. This paper proves that if the points are added one by one, then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at mostO(nlogn+n [d/2]). Under the assumption that the points and weights are independently and identically distributed, the expected running time is between proportional to and a factor logn more than the expected size of the regular triangulation. The expectation is over choosing the points and over independent coin-flips performed by the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Aurenhammer. Power diagrams: properties, algorithms and applications.S1AM J. Comput.,16 (1987), 78–96.

    Google Scholar 

  2. F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure.ACM Comput. Surveys,23 (1991), 345–406.

    Google Scholar 

  3. J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree.Theoret. Comput. Sci.,112 (1993), 339–354.

    Google Scholar 

  4. H. Bruggesser and P. Mani. Shellable decompositions of cells and spheres.Math. Scand.,29 (1971), 197–205.

    Google Scholar 

  5. C. Buchta, J. Müller, and R. F. Tichy. Stochastical approximation of convex bodies.Math. Ann.,271 (1985), 225–235.

    Google Scholar 

  6. K. Clarkson and P. Shor. Applications of random sampling in computational geometry.Discrete Comput. Geom.,4(1989), 387–421.

    Google Scholar 

  7. B. N. Delaunay. Sur la sphère vide.Izv. Akad. Nauk SSSR Otdel. Mat. Est. Nauk,7 (1934), 793–800.

    Google Scholar 

  8. O. Devillers, S. Meiser, and M. Teillaud. The space of spheres, a geometric tool to unify duality results on Voronoi diagrams.Proc. 4th Canad. Conf. on Computational Geometry, 1992, pp. 263–268.

  9. R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time.Discrete Comput. Geom.,6(1991), 343–367.

    Google Scholar 

  10. H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.

    Google Scholar 

  11. H. Edelsbrunner. An acyclicity theorem for cell complexes ind dimensions.Combinatorica,10 (1990), 251–260.

    Google Scholar 

  12. H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane.IEEE Trans. Inform. Theory,29 (1983), 551–559.

    Google Scholar 

  13. H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms.ACM Trans. Graphics,9 (1990), 66–104.

    Google Scholar 

  14. H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. Manuscript, Dept. Comput. Sci., Univ. Illinois at Urbana-Champaign, 1992.

    Google Scholar 

  15. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams.Algorithmica,7 (1992), 381–413.

    Google Scholar 

  16. B. Joe. Three-dimensional triangulations from local transformations.SIAM J. Sci. Statist. Comput.,10 (1989), 718–741.

    Google Scholar 

  17. B. Joe. Construction of three-dimensional Delaunay triangulations using local transformations.Comput. Aided Geom. Design,8 (1991), 123–142.

    Google Scholar 

  18. C. L. Lawson. Generation of a triangular grid with applications to contour plotting. Memo 299, Jet Propulsion Laboratory, Pasadena, CA, 1972.

    Google Scholar 

  19. C. L. Lawson. Software forC 1 surface interpolation. InMathematical Software III, edited by J. Rice. Academic Press, New York, 1977, pp. 161–194.

    Google Scholar 

  20. C. L. Lawson. Properties ofn-dimensional triangulations.Comput. Aided Geom. Design,3 (1986), 231–246.

    Google Scholar 

  21. C. Lee. Regular triangulations of convex polytopes.Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, edited by P. Gritzmann and B. Sturmfels, American Mathematical Society, Providence, RI, 1991, 443–456.

    Google Scholar 

  22. K. Melhorn, S. Meiser, and C. Ó'Dúnlaing. On the construction of abstract Voronoi diagrams.Discrete Comput. Geom.,6 (1991), 211–224.

    Google Scholar 

  23. F. P. Preparata and M. I. Shamos.Computational Geometry—An Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  24. J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.Math. Ann.,83 (1921), 113–115.

    Google Scholar 

  25. V. T. Rajan. Optimality of the Delaunay triangulations in ℜd.Proc. 7th Ann. Symp. on Computational Geometry, 1991, pp. 357–363.

  26. E. Schönhardt. Über die Zerlegung von Dreieckspolyedern in Tetraeder.Math. Ann.,98(1928), 309–312.

    Google Scholar 

  27. R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face.Proc. 18th Ann. ACM Symp. on Theory of Computing, 1986, pp 403–413.

  28. G. F. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques.J. Reine Angew. Math.,133 (1907), 97–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Chazelle.

The research of both authors was supported by the National Science Foundation under Grant CCR-8921421 and the research by the first author was also supported under the Alan T. Waterman award, Grant CCR-9118874. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelsbrunner, H., Shah, N.R. Incremental topological flipping works for regular triangulations. Algorithmica 15, 223–241 (1996). https://doi.org/10.1007/BF01975867

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01975867

Key words

Navigation