Pharmaceutisch Weekblad

, Volume 8, Issue 1, pp 72–78 | Cite as

The place of quinolones in antibacterial therapy in hospitals

  • R. P. Mouton
Quinolones in Perspective
  • 33 Downloads

Abstract

A comparative evaluation is made on activity, resistance problems and side effects of nine quinolones. These data and the information on clinical experiences are used to outline the author's view on the present position of these compounds in treatment policies. The following indications seem appropriate: norfloxacin or pipemidic acid in lower urinary tract infection, secondary to nitrofurantoin and sulfonamides; one of the more active quinolones, like ciprofloxacin, in case of therapy failure or multiple resistance; application for gonorrhoea appears attractive, but data on long-term effects and resistance are needed; in antibacterial combinations for selective bowel decontamination. Comparative clinical trials are essential before other indications for quinolones in clinical policies can be defined.

Key words

Bacterial infections Drug resistance Drug treatment Intestinal decontamination Quinolones Side effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seibert G, Limbert M, Kiesel N. Comparison of the antibacterialin vitro andin vivo activity of ofloxacin (HOE 280 DL 8280) and nalidixic acid analogues. Eur J Clin Microbiol 1983;2:548–53.Google Scholar
  2. 2.
    Barry AL, Jones RN, Thornsberry C, et al. Antibacterial activities of ciprofloxacin, norfloxacin, oxolinic acid, cinoxacin and nalidixic acid. Antimicrob Agents Chemother 1984;25:633–7.Google Scholar
  3. 3.
    Bauernfeind A, Ullmann U.In vitro activity of enoxacin, ofloxacin, norfloxacin and nalidixic acid. J Antimicrob Chemother 1984;14C:33–7.Google Scholar
  4. 4.
    Van Caekenberghe DL, Pattyn SR.In vitro activity of ciprofloxacin compared with those of other new fluorinated piperazinyl-substituted quinoline derivatives. Antimicrob Agents Chemother 1984;25:518–21.Google Scholar
  5. 5.
    Gay JD, De Young DR, Roberts GD.In vitro activities of norfloxacin and ciprofloxacin againstMycobacterium tuberculosis, M. avium complex,M. chelonei, M. fortuitum andM. kansasii. Antimicrob Agents Chemother 1984;26:94–6.Google Scholar
  6. 6.
    Heessen FWA, Muytjens HL.In vitro activities of ciprofloxacin, norfloxacin, pipemidic acid, cinoxacin, and nalidixic acid againstChlamydia trachomatis. Antimicrob Agents Chemother 1984;25:123–4.Google Scholar
  7. 7.
    Isaacson DM, Foleno B.In vitro activity of a new quinolone antimicrobial, ofloxacin, againstLegionella and other selected respiratory pathogens. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 985.Google Scholar
  8. 8.
    Machka K.In vitro activity of ciprofloxacin and norfloxacin againstGardnerella vaginalis. Eur J Clin Microbiol 1984;3:374.Google Scholar
  9. 9.
    Pierson CL.In vitro activity of enoxacin and five other antimicrobials against clinical isolates of mycoplasma. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 987.Google Scholar
  10. 10.
    Prabhala RH, Rao B, Marshall R, Bansal MB, Thadepalli H.In vitro susceptibility of anaerobic bacteria to ciprofloxacin (Bay o 9867). Antimicrob Agents Chemother 1984;26:785–6.Google Scholar
  11. 11.
    Rettig P, Rollerson W, Schribner, Marks MI.In vitro activity of ofloxacin (ORF) and other quinolones against sexually transmitted pathogens (STPs). 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 986.Google Scholar
  12. 12.
    Scribner RK, Muszynski MJ, Marks MI.In vitro activity of antimicrobials, alone and in combination, againstPseudomonas cepacia. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 394.Google Scholar
  13. 13.
    Verbist L. Comparativein vitro study of 10 gyrase inhibitors. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 464.Google Scholar
  14. 14.
    Weber AH, Scribner RK, Conrad DA, Marks MI.In vitro activity of ofloxacin (ORF-18489/DL-8280) against pediatric pathogens. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 456.Google Scholar
  15. 15.
    Wise R, Andrews JM, Danks G.In vitro activity of enoxacin (CI-919), a new quinolone derivative, compared with that of other antimicrobial agents. J Antimicrob Chemother 1984;13:237–44.Google Scholar
  16. 16.
    Aznar J, Caballero MC, Lozano MC, De Miguel C, Palomares JC, Perea EJ. Activities of new quinolone derivatives against genital pathogens. Antimicrob Agents Chemother 1985;27:76–8.Google Scholar
  17. 17.
    Smith SM, Eng RHK. Activity of ciprofloxacin against methicillin resistantStaphylococcus aureus. Antimicrob Agents Chemother 1985;27:688–91.Google Scholar
  18. 18.
    Harrison LH, Cox CE. Bacteriologic and pharmaco-dynamic aspects of nalidixic acid. J Urol 1970;104:903–13.Google Scholar
  19. 19.
    Mannisto PT. Pharmacokinetics of nalidixic acid and oxolinic acid in healthy women. Clin Pharmacol Ther 1976;19(1):37–46.Google Scholar
  20. 20.
    Colleen S, Andersson K-E, Mardh P-A. Studies on cinoxacin. J Antimicrob Chemother 1977;3:579–84.Google Scholar
  21. 21.
    Eandi M, Viano I, Di Nola F, Leone L, Genazzani E. Pharmacokinetics of norfloxacin in healthy volunteers and patients with renal and hepatic damage. Eur J Clin Microbiol 1983;2:253–9.Google Scholar
  22. 22.
    Boelaert J, Valcke Y, Schurgers M, et al. Pharmaco-kinetics of ciprofloxacin in patients with renal dysfunction. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 766.Google Scholar
  23. 23.
    Davies BI, Maesen FPV, Teengs JP. Serum and sputum concentrations of enoxacin after single oral dosing in a clinical and bacteriological study. J Antimicrob Chemother 1984;14C:83–9.Google Scholar
  24. 24.
    Höffken G, Lode H, Prinzing C, Borner K, Koeppe P. Pharmacokinetics of ciprofloxacin. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 764.Google Scholar
  25. 25.
    Klinge E, Männistö PT, Mäntylä R, Mattila J, Hänninen U. Single- and multiple-dose pharmacokinetics of pipemidic acid in normal human volunteers. Antimicrob Agents Chemother 1984;26:69–73.Google Scholar
  26. 26.
    Anonymous. Pefloxacin. Product information Rhône-Poulenc, 1983.Google Scholar
  27. 27.
    Stamey TA, Bragonje J. Resistance to nalidixic acid. A misconception due to underdosage. JAMA 1976;236:1857–60.Google Scholar
  28. 28.
    Tenney JH, Maack RW, Chippendale GR. Rapid selection of organisms with increasing resistance on subinhibitory concentrations of norfloxacin in agar. Antimicrob Agents Chemother 1983;23:188–9.Google Scholar
  29. 29.
    Barry AL, Jones RN. Cross-resistance among cinoxacin, ciprofloxacin, DJ-6783, enoxacin, nalidixic acid, norfloxacin, and oxolinic acid afterin vitro selection of resistant populations. Antimicrob Agents Chemother 1984;25:775–7.Google Scholar
  30. 30.
    Duckworth W, Williams JD. Frequency of appearance of resistant variants to norfloxacin and nalidixic acid. J Antimicrob Chemother 1984;136:33–8.Google Scholar
  31. 31.
    Alexander S, Forman L. Which of the drugs caused the rash? Or the value of the lymphocyte transformation test in eruptions caused by nalidixic acid. Br J Dermatol 1970;84:429–34.Google Scholar
  32. 32.
    Cox CE. Oxolinic acid therapy of recurrent urinary tract infections. Del Med J 1970;42:327–32.Google Scholar
  33. 33.
    Cox CE, Simmons JR. Cinoxacin therapy for urinary tract infections: therapeutic safety and efficacy. South Med J 1982;75:549–51.Google Scholar
  34. 34.
    Guerra JG, Falconi E, Palomino JC, Benavente L, de Mayolo EA. Clinical evaluation of norfloxacin versus cotrimoxazole in urinary tract infections. Eur J Clin Microbiol 1983;2:260–5.Google Scholar
  35. 35.
    Wittmann DH, Huebner A, Rock R, Bauernfeind A. Penetration of pefloxacin into inorganic and organic bone compartments: a cross-over study in 30 patients. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 774.Google Scholar
  36. 36.
    Bauernfeind A, Petermüller C, Danninger J. Reduction of sensitivity to pefloxacin, ofloxacin, norfloxacin and ciprofloxacin inPseudomonas aeruginosa. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 460.Google Scholar
  37. 37.
    Crook SM, Selkon JB, McLardy Smith PD. Clinical resistance to long-term oral ciprofloxacin. Lancet 1985;1:1275.Google Scholar
  38. 38.
    Chapman ST, Speller DCE, Reeves DS. Resistance to ciprofloxacin. Lancet 1985;2:39.Google Scholar
  39. 39.
    Mouton RP, Mulders SLTA. Combined resistance to betalactams and quinolones. 25th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, September 30–October 20, 1984. Washington DC: American Society for Microbiology, 1985: abstract 405.Google Scholar
  40. 40.
    Schüller J, Walther V, Mayer P, Marx F-J. Behandlung von Harnwegsinfekten mit Pipemidsäure und Cotrimoxazol. Münch Med Wochenschr 1983;125:427–30.Google Scholar
  41. 41.
    Guiot HFL, Van der Meer JWM, Van Furth R. Selective antimicrobial modulation of human microbial flora: infection prevention in patients with decreased host defense mechanisms by selective elimination of potentially pathogenic bacteria. J Infect Dis 1981;143:644–54.Google Scholar
  42. 42.
    Wade JC, De Jongh CA, Newman KA, Crowley J, Wiernik PH, Schimpff SC. Selective antimicrobial modulation as prophylaxis against infection during granulocytopenia: trimethoprim-sulfamethoxazole vs nalidixic acid. J Infect Dis 1983;147:624–43.Google Scholar
  43. 41.
    Muytjens HL, Van Veldhuizen GL, Welling GW, Van der Ros-van de Repe J, Boerema HBJ, Van der Waaij D. Selective decontamination of the digestive tract by pipemidic acid. Antimicrob Agents Chemother 1983;24:902–4.Google Scholar
  44. 44.
    Pecquet SS, Andremont AO, Tancrede CH. Microbial modulation of the intestinal tract (MMIT) with oral norfloxacin. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 772.Google Scholar
  45. 45.
    Rozenberg-Arska M, Dekker AW, Verhoef J. Ciprofloxacin for selective decontamination of the alimentary tract in patients with acute leukemia during remission induction treatment: the effect on faecal flora. J Infect Dis 1985;152:104–7.Google Scholar
  46. 46.
    Atlas E, Clark H, Silverblatt F. Nalidixic acid and oxolinic acid in the treatment of chronic bacteriuria. Ann Intern Med 1969;70:713–21.Google Scholar
  47. 47.
    Sabbour MS, El Bokl MA, Osman LM. Experiences on the efficacy and safety of nalidixic acid, oxolinic acid, cinoxacin and norfloxacin in the treatment of urinary tract infections (UTI). Infection 1984;12:377–80.Google Scholar
  48. 48.
    Giamarellou H, Tsagarakis J, Petrikkos G, Daikos GK. Norfloxacin versus cotrimoxazole in the treatment of lower urinary tract infections. Eur J Clin Microbiol 1983;2:266–9.Google Scholar
  49. 49.
    Goldstein EJC, Alpert ML, Ginsberg BP. Norfloxacin versus trimethoprim-sulfamethoxazole in the therapy of uncomplicated, community-acquired urinary tract infections. Antimicrob Agents Chemother 1985;27:422–3.Google Scholar
  50. 50.
    Bologna M, Vaggi L, Forchetti CM, Martini E. Bactericidal intraprostatic concentrations of norfloxacin. Lancet 1983;2:280.Google Scholar
  51. 51.
    Ramirez CA, Bran JL, Mejia CR, Garcia JF. Open, prospective study of the clinical efficacy of ciprofloxacin. Antimicrob Agents Chemother 1985;28:128–32.Google Scholar
  52. 52.
    Desplaces N, Gutmann L, Acar JF. Twice-daily oral therapy for chronic staphylococcal osteitis (CSO) with a new quinolone Pefloxacin (PEF) alone or in combination with Rifampicine (RIF). 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 279.Google Scholar
  53. 53.
    Katsu M, Saito A. An overview of experimental and clinical results in Japan with ofloxacin, a unique antibacterial agent. In: Ofloxacin, DL-8280, broad spectrum antibacterial agent. Tokyo: Excerpta Medica.Google Scholar
  54. 54.
    Notowicz A, Stolz E, Van Klingeren B. A double blind study comparing two dosages of enoxacin for the treatment of uncomplicated urogenital gonorrhoea. J Antimicrob Chemother 1984;14C:91–4.Google Scholar
  55. 55.
    Strunk RW, Scheld WM. Ciprofloxacin (Cip) therapy of experimentalPseudomonas aeruginosa (Pa) endocarditis (E). 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 278.Google Scholar
  56. 56.
    Sullam PM, Täuber MG, Hackbarth CJ, Chambers HF, Scott KG, Sande MA. Pefloxacin therapy for experimental endocarditis caused by methicillin-susceptible or methicillin-resistant strains ofStaphylococcus aureus. Antimicrob Agents Chemother 1985;27:685–7.Google Scholar
  57. 57.
    Norden CW, Shinners E. Ciprofloxacin is effective therapy inPseudomonas aeruginosa experimental osteomyelitis. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984: abstract 273.Google Scholar
  58. 58.
    Sabbaj J, Hoagland VL, Shih WJ. Treatment of urinary tract infection with norfloxacin and cotrimoxazole — a comparison. 23rd Interscience Conference on Antimicrobial Agents and Chemotherapy Washington DC, October 24–26, 1983. Washington DC: American Society for Microbiology, 1983: abstract 518.Google Scholar
  59. 59.
    Crider SR, Colby SD, Miller LK, Kerbs SBJ, Harrison WO, Berg SW. Oral norfloxacin vs parenteral spectinomycin for urethritis due to penicillinase-producingNeisseria gonorrhoeae. 23rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 24–26, 1983. Washington DC: American Society for Microbiology, 1983: abstract 58.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1986

Authors and Affiliations

  • R. P. Mouton
    • 1
  1. 1.Department of Medical MicrobiologyUniversity HospitalRC LeidenThe Netherlands

Personalised recommendations