Advertisement

Experientia

, Volume 36, Issue 4, pp 380–382 | Cite as

Action spectra for bilirubin photodisappearance

  • D. A. Lightner
  • T. A. Wooldridge
  • S. L. Rodgers
  • R. D. Norris
Article

Summary

The excitation wavelength dependence of bilirubin photodestruction, as measured by quantum yields, has been determined in benzene, chloroform-1% ethanol, chloroform-1% hexane, methanol-1% concentrated ammonia, pH 8.5 aqueous buffer and pH 7.4 aqueous buffer with added albumin. The results show that in the visible spectrum the 370–490 nm excitation wavelength region is very effective in the photodestruction, but excitation in the UV-region (λ<320 nm) is even more effective.

Keywords

Action Spectrum Fract Versus Bovine Serum Albumin Concentrate NH4OH Methanolic Ammonia Lamp Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 2.
    D. Bergsma and S.H. Blondheim, Ed., Bilirubin Metabolism in the Newborn, part 2. American Elsevier, New York 1976.Google Scholar
  2. 3.
    A.K. Brown and J. Showacre, Ed., Phototherapy for Neonatal Hyperbilirubinemia, U.S. Govt. Printing Office, DHEW Publication No. (NIH) 76-1075, Washington, 1976; G.B. Odell, R. Schaffer and A.P. Simopoulos, Ed., Phototherapy in the Newborn: An Overview. U.S. Natl Acad. Sci., Washington 1974.Google Scholar
  3. 4.
    Final Report of the Committee on Phototherapy in the Newborn, U.S. Natl Acad. Sci., Washington 1974.Google Scholar
  4. 5.
    T.R.C. Sisson, N. Kendall, E. Shaw and L. Kechavarz-Oliai, J. Pediatr.81, 35 (1972).CrossRefPubMedGoogle Scholar
  5. 6.
    J. Sausville, T.R.C. Sisson and D. Berger, J. illum. Engng Soc. Japan 112 (1972).Google Scholar
  6. 7.
    R.E. Davies and S.J. Keohane, Photochem. Photobiol.17, 303 (1973).CrossRefPubMedGoogle Scholar
  7. 8.
    H. Raethel, J. Pediatr.87, 110 (1975).CrossRefPubMedGoogle Scholar
  8. 9.
    S.C. Glauser, S.A. Lombard, E.M. Glauser and T.R.C. Sisson, Proc. Soc. exp. Biol. Med.136, 518 (1971).CrossRefPubMedGoogle Scholar
  9. 10.
    D.A. Lightner, Photochem. Photobiol.26, 427 (1977).CrossRefGoogle Scholar
  10. 11.
    R.E. Behrman, J. Pediatr.84, 135 (1974).CrossRefGoogle Scholar
  11. 12.
    T.A. Wooldridge and D.A. Lightner, J. liq. Chromat.1, 653 (1978).CrossRefGoogle Scholar
  12. 13.
    C.G. Hatchard and C.A. Parker, Proc. Soc.A 235, 518 (1956).CrossRefGoogle Scholar
  13. 14.
    E.E. Wegner and A.W. Adamson, J. Am. chem. Soc.88, 384 (1966).CrossRefGoogle Scholar
  14. 15.
    D.A. Lightner, A. Cu, A.F. McDonagh and L. Palma, Biochem. biophys. Res. Commun.20, 723 (1977).Google Scholar
  15. 16.
    J.D. Ostrow and R.V. Branham, Gastroenterology58, 15 (1970).PubMedGoogle Scholar
  16. 17.
    J.G. Calvert and J.N. Pitts, Jr. in: Photochemistry, p. 783. John Wiley, New York 1966.Google Scholar
  17. 18.
    S. Kawai, J. pharm. Soc. Japan86, 1125 (1966); Chem. Abstr. 66: 104551 j.Google Scholar
  18. 19.
    A.O. Pedersen, F. Schonheyder and R. Brodersen, Eur. J. Bioch.72, 213 (1977).CrossRefGoogle Scholar
  19. 20.
    J.D. Ostrow, Semin. Hemat.9, 113 (1972).PubMedGoogle Scholar
  20. 21.
    D.A. Lightner and A. Cu, Life Sci.15, 723 (1977).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • D. A. Lightner
    • 1
  • T. A. Wooldridge
    • 1
  • S. L. Rodgers
    • 1
  • R. D. Norris
    • 1
  1. 1.Department of ChemistryUniversity of NevadaRenoUSA

Personalised recommendations