Advertisement

Agents and Actions

, Volume 21, Issue 1–2, pp 223–228 | Cite as

Comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humans

  • S. A. Barrie
  • J. V. Wright
  • J. E. Pizzorno
  • E. Kutter
  • P. C. Barron
Bioinorganic Interaction

Abstract

The comparative absorption of zinc after oral administration of three different complexed forms was studied in 15 healthy human volunteers in a double-blind four-period crossover trial. The individuals were randomly divided into four groups. Each group rotated for four week periods through a random sequence of oral supplementation including: zinc picolinate, zinc citrate, and zinc gluconate (equivalent to 50 mg elemental zinc per day) and placebo. Zinc was measured in hair, urine, erythrocyte and serum before and after each period. At the end of four weeks hair, urine and erythrocyte zinc levels rose significantly (p<0.005, p<0.001, and p<0.001) during zinc picolinate administration. There was no significant change in any of these parameters from zinc gluconate, zinc citrate or placebo administration. There was a small, insignificant rise in serum zinc during zinc picolinate, zinc citrate and placebo supplementation. The results of this study suggest that zinc absorption in humans can be improved by complexing zinc with picolinic acid.

Keywords

Placebo Zinc Zinc Absorption Crossover Trial Zinc Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. H. Sandstead,Zinc nutrition in the United States. Am. J. Clin. Nutr.26, 1251–1260 (1973).Google Scholar
  2. [2]
    J. M. Holden, W. R. Wolf and W. Mertz,Zinc and copper in self selected diets. J. Am. Diet. Assoc.75, 23–8 (1979).Google Scholar
  3. [3]
    Recommended Dietary Allowances. Washington D. C.: National Academy of Sciences (1980).Google Scholar
  4. [4]
    A. S. Prassad,Zinc in human nutrition. Crit. Rev. Clin. Lab. Sci.8, 1–80 (1977).Google Scholar
  5. [5]
    G. W. Evans, C. L. Grace and H. J. Yotova,A proposed mechanism of zinc absorption in the rat. Am. J. Physiol.228, 501–505 (1975).Google Scholar
  6. [6]
    N. W. Solomons,Biological availability of zinc in humans. Am. J. Clin. Nutr.35, 1048–1075 (1982).Google Scholar
  7. [7]
    W. T. Johnson and G. W. Evans,Tissue uptake of zinc in rats following the administration of zinc dipicolinate or zinc histidine. J. Nutr.112, 914–919 (1982).Google Scholar
  8. [8]
    G. W. Evans,Normal and abnormal zinc absorption in man and animals: The tryptophan connection. Nutr. Rev.38, 137–141 (1980).Google Scholar
  9. [9]
    G. W. Evans and E. C. Johnson,Zinc. absorption in rats fed a low-protein diet supplemented with tryptophan or picolinc acid.Google Scholar
  10. [10]
    G. W. Evans and P. E. JohnsonsCharacterization and quantitation of a zinc-binding ligand in human milk. Ediatr. Res.14, 876–880 (1980).Google Scholar
  11. [11]
    L. S. Hurley, B. Lonnerdal and A. G. Stanislowski,Zinc citrate, human milk and acrodermatitis enteropathica. Lancet.1, 667–668 (1979).Google Scholar
  12. [12]
    B. Lonnerdal, A. G. Stanislowski and L. S. Hurley,Isolation of a low molecular weight zinc binding ligand from human milk. J. Inorg. Biochem.12, 71–78 (1980).Google Scholar
  13. [13]
    C. D. Eckhert, M. V. Sloan, H. R. Duncan and L. S. Hurley,Zinc binding: A difference between human and bovine milk. Science195, 789–790 (1977).Google Scholar
  14. [14]
    M. K. Song and N. F. Adham,Role of prostaglandin E2 in zinc absorption in rats. Am. J. Physiol.234, E99–105 (1978).Google Scholar
  15. [15]
  16. [16]
    G. W. Evans and P. E. Johnson,Zinc binding factor in Acrodermatitis enteropathica. Lancet2, 1310 (1976).Google Scholar
  17. [17]
    C. Hahan and G. W. Evans,Identification of a low molecular weight complex in rat intestines. Proc. Soc. Exp. Biol. Med.144, 794–796 (1973).Google Scholar
  18. [18]
    R. M. Barnes,Determination of Trace Elements in Biological Materials by Inductively Coupled Plasma Spectroscopy with Novel Chelating Resins. Trace. Element. Res.6, 93–103 (1984).Google Scholar
  19. [19]
    J. Tzavares and A. D. Shendrik,An ICP analytical scheme to screen environmental samples for metals. Amer. Lab. 50–65 (1984) July.Google Scholar
  20. [20]
    R. F. Suddendork and G. L. Smith,ICP emission spectroscopy: Concepts and clinical applications. J. Clin. Lab. Automation3(4), 256–262 (1983).Google Scholar
  21. [21]
    G. W. Evans and W. C. Johnson,Effect of iron, Vitamin B-6 and picolinic acid on zinc absorption in the rat. J. Nutr.111, 69–75 (1981).Google Scholar
  22. [22]
    G. W. Evans and E. C. Johnson,Growth stimulating effect of picolinic acid added to rat diets. Proc. Soc. Exp. Biol. Med.165, 457–461 (1980).Google Scholar
  23. [23]
    I. Krieger,Picolinic acid in the treatment of disorders requiring zinc supplementation. Nutr. Rev.38, 148–150 (1980).Google Scholar
  24. [24]
    C. J. Seal and F. W. Heaton,Chemical factors affecting the intestinal absorption of zinc in vitro and in vivo. Brit. J. Nutr.50, 317–324 (1983).Google Scholar
  25. [25]
    L. S. Hurley and B. Lonnerdal,Zinc binding in human milk: citrate versus picolinate. Nutr. Rev.40, 65–71 (1982).Google Scholar
  26. [26]
    A. K. Babcock, R. I. Henkin, R. L. Aamodt, D. M. Foster and M. Berman,Effects of oral zinc loading on zinc metabolism in humans II. In vivokinetics. Metabolism (4)31, 335–347 (1982).Google Scholar
  27. [27]
    B. Sandstrom, B. Arvidsson, A. Cederbled and E. Bjorn-Rasmusen,Zinc absorption from composite meals. I. The significance of wheat extraction rate, zinc calcium and protein content in meals based on bread. Am. J. Clin. Nutr.33, 739–745 (1980).Google Scholar
  28. [28]
    C. E. Casey, P. A. Walraven and K. M. Hambridge,Zinc absorption and plasma response. Am. J. Clin. Nutr.34, 1443–1444 (1981).Google Scholar
  29. [29]
    R. J. Cousins,Regulatory aspects of zinc absorption: role of intracellular ligand. Am. J. Clin. Nutr.32, 339–345 (1979).Google Scholar
  30. [30]
    R. J. Cousins,Regulatory aspects of zinc absorption, relationship to zinc nutrition in animals. In: Proc Cornell Nutr Conf. Ithaca NY: Cornell Univ. Press 5–8 (1979).Google Scholar
  31. [31]
    W. J. Miller and P. E. Stoke,Zinc metabolism and homeostasis — some newer concepts. Clin. Appl. of Zinc. Metab. Thomas (1973).Google Scholar
  32. [32]
    S. B. Deeming and C. W. Weber,Evaluation of hair analysis for determination of zinc status using rats. Am. J. Clin. Nutr.30, 2047–2052 (1977).Google Scholar
  33. [33]
    L. M. Klevay,Hair as a biopsy material. Arch. Intern. Med.138, 1127–1128 (1978).Google Scholar
  34. [34]
    M. Laker,On determining trace element levels in man: the uses of blood and hair. Lancet.31, 261–262 (1982) July.Google Scholar
  35. [35]
    K. M. Hambridge, C. Hambridge, M. Jacobs and J. D. Baum,Low levels of zinc in hair, anorexia, poor growth and hypogeusia in children. Pediatr. Res.6, 868–874 (1972).Google Scholar
  36. [36]
    K. E. Bergman, M. D. Makosch and K. H. Tews,Abnormalities of hair zinc concentration in mothers of newborn infants with spina bifida. Am. J. Clin. Nutr.30, 2145–2150 (1980).Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • S. A. Barrie
    • 1
  • J. V. Wright
    • 1
  • J. E. Pizzorno
    • 1
  • E. Kutter
    • 1
  • P. C. Barron
    • 1
  1. 1.John Bastyr College of Naturopathic MedicineSeattleUSA

Personalised recommendations