Advertisement

Netherlands Journal of Plant Pathology

, Volume 98, Issue 6, pp 343–360 | Cite as

Epidemiology of beet necrotic yellow vein virus in sugar beet at different initial inoculum levels in the presence or absence of irrigation: Dynamics of inoculum

  • G. Tuitert
  • Y. Hofmeester
Articles

Abstract

Using field plots where rhizomania had not previously been detected, different inoculum levels of beet necrotic yellow vein virus (BNYVV) were created by application of infested soil. A susceptible sugar beet cultivar (cv. Regina) was grown for two consecutive years (1988 and 1989), in the presence or absence of drip irrigation. In soil samples taken in spring 1989, the different initial inoculum levels of 1988 could be distinguished using a quantitative bioassay estimating most probable numbers (MPNs) of infective units per 100 g dry soil. The first sugar beet crop resulted in a tenthousandfold multiplication of inoculum of BNYVV (viruliferousPolymyxa betae). Mean MPNs of BNYVV ranged from 0.6 and 7 per 100 g soil for the lowest inoculum level to 630 and 1100 per 100 g for the highest level, in plots without and with irrigation, respectively. In spring 1990, MPNs had again increased. In both years, the initial inoculum level of 1988 had a significant linear effect on log-transformed MPNs of BNYVV determined. Log-transformed MPNs for 1990 and 1989 showed a positive linear correlation, despite a decreasing multiplication ratio at higher inoculum levels. Drip irrigation during one or two years enhanced the increase in MPN of BNYVV, which was reflected by the enhancement of multiplication ratios at all inoculum levels. The totalP. betae population was also higher after growing two irrigated crops than after growing two non-irrigated ones.

Additional Keywords

Polymyxa betae rhizomania BNYVV soil-borne virus MPN quantitative technique bioassay polyetic epidemic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., 1987. Studies on the ecology and control ofPolymyxa betae Keskin, as a fungal vector of the causal virus (beet necrotic yellow vein virus) of rhizomania disease of sugar beet. Report of the Hokkaido Prefectural Agricultural experimental Station No. 60, 90 pp.Google Scholar
  2. Abe, H. & Tamada, T., 1986. Association of beet necrotic yellow vein virus with isolates ofPolymyxa betae Keskin. Annals of the Phytopathological Society of Japan 52: 235–247.Google Scholar
  3. Asher, M.J.C. & Blunt, S.J., 1987. The ecological requirements ofPolymyxa betae. Proceedings 50th Winter Congress IIRB, Brussels. p. 45–55.Google Scholar
  4. Baker, R.J., 1980. Multiple comparison tests. Canadian Journal of Plant Science 60: 325–327.Google Scholar
  5. Beemster, A.B.R. & De Heij, A., 1987. A method for detectingPolymyxa betae and beet necrotic yellow vein virus in soil using sugar-beet as a bait plant. Netherlands Journal of Plant Pathology 93: 91–93.Google Scholar
  6. Blunt, S.J., Asher, M.J.C. & Gilligan, C.A., 1991. Infection of sugar beet byPolymyxa betae in relation to soil temperature. Plant Pathology 40: 257–267.Google Scholar
  7. Brown, K.F. & Biscoe, P.V., 1985. Fibrous root growth and water use of sugar beet. Journal of Agricultural Science, Cambridge, 105: 679–691.Google Scholar
  8. Brown, K.F., Messem, A.B., Dunham, R.J. & Biscoe, P.V., 1987. Effect of drought on growth and water use of sugar beet. Journal of Agricultural Science, Cambridge 109: 421–435.Google Scholar
  9. Bürcky, K., Büttner, G. & Winner, C., 1986. Schädigung der Zuckerrübe durch das Aderngelbfleckigkeitsvirus (BNYVV) in Abhängigkeit vom Verseuchungsgrad des Bodens. I. Gewicht, Rübenqualität und Virustiter. Zuckerindustrie 111: 216–224.Google Scholar
  10. Büttner, G. & Bürcky, K., 1990. Versuche und Überlegungen zum Nachweis des BNYVV im Boden mittls Fangpflanzen. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 97: 56–64.Google Scholar
  11. Ciafardini, G. & Marotta, B., 1989. Use of the most probable number technique to detectPolymyxa betae (Plasmodiophoromycetes) in soil. Applied and Environmental Microbiology 55: 1273–1278.Google Scholar
  12. Dawkins, H.C., 1981. The misuse of t-tests, LSD and multiple-range tests. Bulletin of the British Ecological Society 12: 112–115.Google Scholar
  13. De Heij, A., 1991. The influence of water and temperature on the multiplication ofPolymyxa betae, vector of beet necrotic yellow vein virus. In: Beemster, A.B.R., Bollen, G.J., Gerlagh, M., Ruissen, M.A., Schippers, B. & Tempel, A. (Eds), Biotic interactions and soil-borne diseases. Elsevier, Amsterdam. p. 83–90.Google Scholar
  14. Dobson, R., Gabrielson, R.L. & Baker, A.S., 1982. Soil water potential requirements for root-hair and cortical infection of chinese cabbage byPlasmodiophora brassicae. Phytopathology 72: 1598–1600.Google Scholar
  15. Duncan, M.B., 1955. Multiple range and multiple F tests. Biometrics 11: 1–42.Google Scholar
  16. Duniway, J.M., 1976. Movement of zoospores ofPhytophthora cryptogea in soils of various textures and matric potentials. Phytopathology 66: 877–882.Google Scholar
  17. Gerik, J.S., Hubbard, J.C. & Duffus, J.E., 1990. Soil matric potential effects on infection byPolymyxa betae and BNYVV. Proceedings of the First Symposium of the International Working Group on Plant Viruses with Fungal Vectors, Braunschweig, Germany, August 21–24 1990. Schriftenreihe der Deutschen Phytomedizinischen Gesellschaft, Band 1: 75–78.Google Scholar
  18. Goffart, J.P., Van Bol, V. & Maraite, H., 1987. Quantification du potentiel d'inoculum dePolymyxa betae Keskin dans les sols. Proceedings 50th Winter Congress IIRB, Brussels. p. 295–306.Google Scholar
  19. Goffart, J.P., Horta, V. & Maraite, H., 1989. Inoculum potential and host range ofPolymyxa betae and beet necrotic yellow vein furovirus. EPPO Bulletin 19: 517–525.Google Scholar
  20. Habibi, B., 1969. Beiträge zur Biologie vonPolymyxa betae. Dissertation Göttingen. 83 pp.Google Scholar
  21. Hillel, D., 1982. Introduction to soil physics. Academic Press, New York. 364 pp.Google Scholar
  22. Hillmann, U., 1984. Neue Erkenntnisse über die Rizomania an Zuckerrüben mit besonderer Berücksichtigung Bayerischer Angbaugebiete. Dissertation Giessen. 226 pp.Google Scholar
  23. Hofmeester, Y. & Tuitert, G., 1989. Development of rhizomania in an artificially infested field. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 51: 827–834.Google Scholar
  24. Jianping, C., Swaby, A.G. & Adams, M.J., 1991. Barley mild mosaic virus inside its fungal vector,Polymyxa graminis. Annals of Applied Biology 118: 615–621.Google Scholar
  25. Kanzawa, K., 1974. Studies on rhizomania. 7. Influence of density ofPolymyxa betae in soil prepared for raising the paperpot on rhizomania. Proceedings of the Sugar Beet Research Association 16: 37–43.Google Scholar
  26. Keskin, B., 1964.Polymyxa betae n.sp., ein Parasit in den Wurzeln von Beta vulgaris Tournefort, besonders während der Jugendentwicklung der Zuckerrübe. Archiv für Mikrobiologie 49: 348–374.CrossRefGoogle Scholar
  27. Mead, R. & Curnow, R.N., 1983. Statistical methods in agriculture and experimental biology. Chapman and Hall, London, New York. 335 pp.Google Scholar
  28. Neher, D. & Duniway, J.M., 1991. Relationship between amount ofPhytophthora parasitica added to field soil and the development of root rot in processing tomatoes. Phytopathology 81: 1124–1129.Google Scholar
  29. Nelson, S.C. & Campbell, C.L., 1991. Infection by clover yellow vein virus alters epidemic components ofCercospora leaf spot on white clover. Phytopathology 81: 989–994.Google Scholar
  30. Payne, R.W., Lane, P.W., Ainsley, A.E., Bicknell, K.E., Digby, P.G.N., Harding, S.A., Leech, P.K., Simpson, H.R., Todd, A.D., Verrier, P.J., White, R.P., Gower, J.C., Tunnicliffe Wilson, G. & Paterson, L.J., 1988. Genstat 5 Reference Manual. Clarendon Press, Oxford. 749 pp.Google Scholar
  31. Rintelen, J. & Walla, J., 1985. Zum Einfluss von Vorfrüchten auf den Befall von Rüben mitPolymyxa betae. Bayerishes Landwirtschaftliches Jahrbuch 62: 565–568.Google Scholar
  32. Schlösser, E., 1990. Rizomania. XII. Effect of BNYVV and BSBV on the development ofPolymyxa betae. Mededelingen van de Faculteit Landbouwwetenschappen van de Rijksuniversiteit Gent 55: 1069–1071.Google Scholar
  33. Steel, R.G.D. & Torrie, J.H., 1980. Principles and procedures of statistics. A biometrical approach, 2nd edition. McGraw-Hill Kogakusha, Tokyo. 663 pp.Google Scholar
  34. Tuitert, G., 1990. Assessment of the inoculum potential ofPolymyxa betae and beet necrotic yellow vein virus (BNYVV) in soil using the most probable number method. Netherlands Journal of Plant Pathology 96: 331–341.Google Scholar
  35. Tuitert, G., 1993. Horizontal spread of beet necrotic yellow vein virus in soil. Netherlands Journal of Plant Pathology 99 (in press).Google Scholar
  36. Tuitert, G. & Hofmeester, Y., 1990. Development of rhizomania at different initial inoculum levels of the soil. Proceedings of the First Symposium of the International Working Group on Plant Viruses with Fungal Vectors, Braunschweig, Germany, August 21–24 1990. Schriftenreihe der Deutschen Phytomedizinischen Gesellschaft, Band 1: 73.Google Scholar
  37. Van der Plank, J.E., 1963. Plant diseases: epidemics and control. Academic Press, New York and London. 349 pp.Google Scholar
  38. Wild, A. & Russell, E.W., 1988. Russell's soil conditions and plant growth, 11th edition. Longman, London. 991 pp.Google Scholar
  39. Winner, C., 1988. Terminologische Fragen in der Rizomaniaforschung. Zuckerindustrie 113: 597–600.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1992

Authors and Affiliations

  • G. Tuitert
    • 1
  • Y. Hofmeester
    • 2
  1. 1.Sugar Beet Research InstituteBergen op Zoomthe Netherlands
  2. 2.Research Station for Arable Farming and Field Production of VegetablesLelystadthe Netherlands

Personalised recommendations