Netherlands Journal of Plant Pathology

, Volume 95, Supplement 1, pp 73–86 | Cite as

Effects of imazalil on sterol composition of sensitive and DMI-resistant isolates of Penicillium italicum

  • J. Guan
  • A. Kerkenaar
  • M. A. De Waard
Article

Abstract

Imazalil differentially inhibited dry weight increase of 10-hour-old germlings of wild-type and DMI-resistant isolates ofPenicillium italicum in liquid malt cultures. EC50 values ranged from 0.005 to 0.27 μg ml−1. In all isolates ergosterol constituted the major sterol (over 95% of total sterols) in the absence of the fungicide. Therefore, DMI-resistance cannot be associated to a deficiency of the C-14 demethylation enzyme in the ergosterol biosynthetic pathway. Imazalil treatment at concentrations around EC50 values for inhibition of mycelial growth resulted in a decrease in ergosterol content and a simultaneous increase in 24-methylene-24,25-dihydrolanosterol content in all isolates. A correlation existed between the imazalil concentration necessary to induce such changes in sterol composition and the EC50 values for inhibition of mycelial growth of the different isolates. The reason for the differential effects of imazalil on sterol composition in the variousP. italicum isolates may be due to decreased accumulation of the fungicide in the mycelium and to other yet non-identified mechanisms of resistance.

Samenvatting

Imazalil remt differentieel de toename in drooggewicht van 10-uur-oude gekiemde sporen van wild-type en DMI-resistente isolaten vanPenicillium italicum in vloeistofcultures van moutextract. De EC50 waarden voor groei van de verschillende isolaten lopen uiteen van 0,005 tot 0,27 μg ml−1. In afwezigheid van het fungicide is in alle isolaten ergosterol het belangrijkste sterol (meer dan 95% van het totaal). DMI-resistentie kan daarom niet in verband staan met deficiëntie van het C-14 demethyleringsenzym in de ergosterol biosynthese. Imazalilbehandeling van mycelium bij concentraties rond de EC50 waarde voor groeiremming, resulteerde bij alle isolaten in een afname van het ergosterolgehalte en een gelijktijdige toename van het gehalte aan 24-methyleen-24,25-dihydrolanosterol. Er bestaat dus een nauwe correlatie tussen de imazalilconcentratie die noodzakelijk is om vergelijkbare veranderingen in sterolsamenstelling te induceren en de EC50 waarde voor remming van myceliumgroei van de verschillende isolaten. De differentiële effecten van imazalil op de sterolsamenstelling van de verschillendeP. italicum isolaten kunnen worden veroorzaakt door verminderde accumulatie van het fungicide in het mycelium en door andere, nog niet geïdentificeerde resistentiemechanismen.

Additional keywords

imazalil Penicillium italicum fungicide resistance sterols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyama, Y., Yoshida, Y., Hata, S., Nishino, T., Katsuki, H., Maitra, U.S., Mohan, V.P. & Sprinson, D.B., 1983. Altered cytochrome P-450 in a yeast mutant blocked in demethylating C-32 of lanosterol. The Journal of Biological Chemistry 258:9040–9042.PubMedGoogle Scholar
  2. Aoyama, Y., Yoshida, Y., Nishino, T., Katsuki, H., Maitra, U.S., Mohan, V.P. & Sprinson, D.B., 1987. Isolation and characterization of an altered cytochrome P-450 from a yeast mutant defective in lanosterol 14α-demethylation. The Journal of Biological Chemistry 262: 14260–14264.PubMedGoogle Scholar
  3. Bartz, J.S. & Eckert, J.W., 1972. Studies on the mechanism of action of 2-aminobutane. Phytopathology 62: 239–246.Google Scholar
  4. Buchenauer, H., 1977. Mechanism of action of the fungicide imazalil inUstilago avenae. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 84: 440–450.Google Scholar
  5. Eckert, J.W., 1987.Penicillium digitatum biotypes with reduced sensitivity to imazalil. Phytopathology 77: 1728.Google Scholar
  6. Fletcher, J.T. & Wolfe, M.S., 1981. Resistance toErysiphe graminis f. sp.hordei to triadimefon, triadimenol and other fungicides. Proceedings of British Crop Protection Conference 2: 633–640.Google Scholar
  7. Folch, J., Lees, M. & Sloanestanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissue. The Journal of Biochemistry 226: 497–509.Google Scholar
  8. Hippe, S. and Köller, W., 1986. Ultrastructure and sterol composition of laboratory strains ofUstilago avenae resistant to triazole fungicides. Pesticide Biochemistry and Physiology 26: 209–219.Google Scholar
  9. Hitchcock, C.A., Barrett-Bee, K.J. & Russell, N.J., 1986. The lipid composition of azoleresistant strains ofCandida albicans. Journal of General Microbiology 132: 2421–2431.PubMedGoogle Scholar
  10. Kato, T., 1986. Sterol biosynthesis in fungi, a target for broad spectrum fungicides. In: Haug, G. & Hoffmann, H. (Eds), Chemistry of Plant Protection, Vol. 1. Springer-Verlag, Berlin, p. 1–24.Google Scholar
  11. Kerkenaar, A. and Barug, D., 1984. Fluorescence microscope studies ofUstilago maydis andPenicillium italicum after treatment with imazalil or fenpropimorph. Pesticide Science 15: 199–205.Google Scholar
  12. Kerkenaar, A., Janssen, G.G. & Costet, M-F., 1986. Special effects of imazalil on sterol biosynthesis ofPenicillium italicum. In: Sixth Iternational Congress of Pesticide Chemistry IUPAC, Ottawa, Canada, Abstract 3C-02.Google Scholar
  13. Kerkenaar, A., Rossum, J.M. van, Versluis, G.G. & Marsman, J.W., 1984. Effect of fenpropimorph and imazalil on sterol biosynthesis inPenicillium italicum. Pesticide Science 15: 177–187.Google Scholar
  14. Kerkenaar, A., Uchiyama, M. & Versluis, G.G., 1981. Specific effects of tridemorph on sterol biosynthesis inUstilago maydis. Pesticide Biochemistry and Physiology 16: 97–104.Google Scholar
  15. Laville, E., 1973. Etudes des activités du R23979 et de ses sels sur les pourritures àPenicillium (P. digitatum, P. italicum) des organes. Fruits 28: 545–547.Google Scholar
  16. Leroux, P. & Gredt, M., 1984. Resistance to fungicides which inhibit ergosterol biosynthesis in laboratory strains ofBotrytis cinerea andUstilago maydis. Pesticide Science 15: 85–89.Google Scholar
  17. Leroux, P., Gredt, M. & Boeda, P., 1988. Resistance to inhibitors of sterol biosynthesis in field isolates and laboratory strains of the eye spot pathogenPseudocercosporella herpotrichoides. Pesticide Science 23: 119–129.Google Scholar
  18. Schepers, H.T.A.M., 1985. Changes during a three-year period in the sensitivity to ergosterol biosynthesis inhibitors ofSphaerotheca fuliginea in the Netherlands. Netherlands Journal of Plant Pathology 91: 105–118.Google Scholar
  19. Siegel, M.R., Kerkenaar, A. & Kaars Sijpesteijn, A., 1977. Antifungal activity of systemic fungicide imazalil. Netherlands Journal of Plant Pathology 83 (suppl. 11): 121–133.Google Scholar
  20. Siegel, M.R. & Ragsdale, N.N., 1978. Antifungal mode of action of imazalil. Pesticide Biochemistry and Physiology 9: 48–56.Google Scholar
  21. Stanis, V.F. & Jones, A.C. 1985. Reduced sensitivity to sterol inhibiting fungicides in field isolates ofVenturia inaequalis. Phytopathology 75: 1098–1110.Google Scholar
  22. Tuyl, J.M. van, 1977. Genetics of fungal resistance to systemic fungicides. Mededelingen Landbouwhogeschool, Wageningen, the Netherlands 77-2. p. 1–136.Google Scholar
  23. Vanden Bossche, H., Lauwers, W., Willemsens, G., Marichal, P., Cornelissen, F., & Cools, W., 1984. Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: the inhibition of isoprenoid biosynthesis. Pesticide Science 15: 188–198.Google Scholar
  24. Vanden Bossche, H., Willemsens, G., Cools, W., Lauwers, W.F.J. & Le Jeune, L., 1978. Biochemical effects of miconazole on fungi. II. Inhibition of ergosterol biosynthesis inCandida albicans. Chemico-Biological Interactions, 21: 59–78.PubMedGoogle Scholar
  25. Waard, M.A. de, 1988. Interactions of fungicide combinations. In: Delp, C.J. (Eds), Fungicide Resistance in North America. APS press. American Phytopathological Society, p. 180–200.Google Scholar
  26. Waard, M.A. de & Fuchs, A., 1982. Resistance to ergosterol biosynthesis inhibitors. II. Genetic and physiological aspects. In Dekker, J. and Georgopoulos, S.G. (Eds), Fungicide Resistance in Plant Protection. Pudoc, Wageningen, p. 87–100.Google Scholar
  27. Waard, M.A. de, Groeneweg, H. & Nistelrooy, J.G.M. van, 1982. Laboratory resistance to fungicides which inhibit ergosterol biosynthesis inPenicilium italicum. Netherlands Journal of Plant Pathology 88: 99–112.Google Scholar
  28. Waard, M.A. de & Nistelrooy, J.G.M. van, 1979. Mechanism of resistance to fenarimol inAspergillus nidulans. Pesticide Biochemistry and Physiology 10: 219–229.Google Scholar
  29. Waard, M.A. de & Nistelrooy, J.G.M. van, 1984. Differential accumulation of fenarimol by a wild-type isolate and fenarimol resistant isolates ofPenicillium italicum. Netherlands Journal of Plant Pathology 90: 143–153.Google Scholar
  30. Waard, M.A. de & Nistelrooy, J.G.M. van, 1988. Accumulation of SBI fungicides in wild-type and fenarimol resistant isolates ofPenicillium italicum. Pesticide Science 22: 371–382.Google Scholar
  31. Walsh, R.L. and Sisler, H.D., 1982. A mutant ofUstilago maydis deficient in sterol C-14 demethylation, characteristics and sensitivity to ergosterol biosynthesis. Pesticide Biochemistry and Physiology 18: 123–131.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1989

Authors and Affiliations

  • J. Guan
    • 1
  • A. Kerkenaar
    • 2
  • M. A. De Waard
    • 1
  1. 1.Department of PhytopathologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Netherlands Organization of Applied Scientific ResearchTNO Institute of Applied ChemistryZeistthe Netherlands

Personalised recommendations