Transgenic Research

, Volume 3, Issue 3, pp 182–194 | Cite as

Reporter genes in transgenic mice

  • Cunqi Cui
  • Maqsood A. Wani
  • David Wight
  • John Kopchick
  • Peter J. Stambrook


Althoughin vivo models utilizing endogenous reporter genes have been exploited for many years, the use of reporter transgenes to dissect biological issues in transgenic animals has been a relatively recent development. These transgenes are often, but not always, of prokaryotic origin and encode products not normally associated with eukaryotic cells and tissues. Some encode enzymes whose activities are detected in cell and tissue homogenates, whereas others encode products that can be detectedin situ at the single cell level. Reporter genes have been used to identify regulatory elements that are important for tissue-specific gene expression or for development; they have been used to producein vivo models of cancer; they have been employed for the study ofin vivo mutagenesis; and they have been used as a tool in lineage analysis and for marking cells in transplanation experiments. The most commonly usedin situ reporter gene islacZ, which encodes a bacterial β-galactosidase, a sensitive histochemical marker. Although it has been used with striking success in cultured cells and in transgenic mouse embryos, its postnatalin vivo expression has been unreliable and disappointing. Nevertheless, the ability to express reporter genes in transgenic mice has been an invaluable resource, providing insights intoin vivo biological mechanisms. The development of newin vivo models, such as those in which expression of transgenes can be activated or repressed, should produce transgenic animal systems that extend our capacity to address heretofore unresolved biological questions.


Transgenic Mouse Reporter Gene Transgenic Animal Lineage Analysis Single Cell Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.M. and Cory, S. (1991) Transgenic models of tumor development.Science 254, 1161–7.PubMedGoogle Scholar
  2. Agoston, D.V., Bravo, D.T. and Waschek, J.A. (1990) Expression of a chimeric VIP gene is targeted to the intestine in transgenic mice.J. Neurosci. Res. 27, 479–86.CrossRefPubMedGoogle Scholar
  3. Alam, J. and Cook, J.L. (1990) Reporter genes: application to the study of mammalian gene transcription.Anal. Biochem. 188, 245–54.CrossRefPubMedGoogle Scholar
  4. Allen, N.D., Gran, D.G., Barton, S.C., Hettle, S., Reik, W. and Surani, M.A. (1988) Transgenes as probes for active chromosomal domains in mouse development.Nature 333, 852–5.CrossRefPubMedGoogle Scholar
  5. Allen, N.D., Norris, M.L. and Surani, M.A. (1990) Epigenetic control of transgene expression and imprinting by genotype-specific modifiers.Cell 61, 853–61.CrossRefPubMedGoogle Scholar
  6. Al-Shawi, R., Burke, J., Jones, C.T., Simons, J.P. and Bishop, J.O. (1988) Amup promoter-thymidine kinase reporter gene shows relaxed tissue-specific expression and confers male sterility upon transgenic mice.Mol. Cell. Biol. 8, 4821–8.PubMedGoogle Scholar
  7. Al-Shawi, R., Burke, J., Wallace, H., Jones, C., Harrison, S., Buxton, D., Maley, S., Chandley, A. and Bishop, J.O. (1991) The herpes simplex virus type 1 thymidine kinase is expressed in the testes of transgenic mice under the control of a cryptic promoter.Mol. Cell. Biol. 11, 4207–16.PubMedGoogle Scholar
  8. Aronow, B., Lattier, D., Silbiger, R., Dusing, M., Hutton, J., Jones, G., Stock, J., McNeish, J., Potter, S., Witte, D. and Wiginton, D. (1989) Evidence for a complex regulatory array in the first intron of the human adenosine deaminase gene.Genes Dev. 3, 1384–400.PubMedGoogle Scholar
  9. Awgulewitsch, A. and Jacobs, D. (1992) Deformed autoregulatory element fromDrosophila functions in a conserved manner in transgenic mice.Nature 358, 341–4.CrossRefPubMedGoogle Scholar
  10. Baim, S.B., Labow, M.A., Levine, A.J., and Shenk, T. (1991) A chimeric mammalian transactivator based on the lac repressor that is regulated by temperature and isopropyl beta-d-thiogalactopyranoside.Proc. Natl Acad. Sci. USA 88, 5072–6.PubMedGoogle Scholar
  11. Barkley, M.D. and Bourgeois, S. (1978) Repressor recognition of operator and effector. In Miller, J.H. and Reznikoff, W.S. eds.,The Operon, pp. 177–220. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
  12. Behringer, R.R., Crotty, D.A., Tennyson, V.M., Brinster, R.L., Palmiter, R.D. and Wolgemuth, D.J. (1993) Sequences 5′ of the homeobox of theHox-1.4 gene direct tissue-specific expression oflacZ during mouse development.Development 117, 823–33.PubMedGoogle Scholar
  13. Belecky-Adams, T., Wight, D.C., Kopchick, J.J. and Parysek, L.M. (1993) Intragenic sequences are required for cell type-specific and injury-induced expression of the rat peripherin gene.J. Neurosci.,18, 5056–65.Google Scholar
  14. Berger, J., Hauber, J., Hauber, R., Geiger, R. and Cullen, B.R. (1988) Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells.Gene 66, 1–10.CrossRefPubMedGoogle Scholar
  15. Bonnerot, C., Grimber, G., Briand, P. and Nicolas, J.F. (1990) Patterns of expression of position-dependent integrated transgenes in mouse embryo.Proc. Natl Acad. Sci. USA 87, 6331–5.PubMedGoogle Scholar
  16. Breitman, M.L., Bryce, D.M., Giddens, E., Clapoff, S., Goring, D., Tsui, L.C., Klintworth, G.K. and Bernstein, A. (1989) Analysis of lens cell fate and eye morphogenesis in transgenic mice ablated for cells of the lens lineage.Development 106, 457–63.PubMedGoogle Scholar
  17. Brinster, R.L., Chen, H.Y., Trumbauer, M., Senear, A.W., Warren R. and Palmiter R.D. (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs.Cell 27, 223–31.CrossRefPubMedGoogle Scholar
  18. Brown, M., Figge, J., Hansen, U., Wright, C., Jeang, K., Khoury, G., Livingston, D.M. and Roberts, T.M. (1987) Lac repressor can regulate expression from a hybrid SV40 early promoter containing alac operator in animal cells.Cell 49, 603–12.CrossRefPubMedGoogle Scholar
  19. Brünner, N., Thompson, E.W., Spang-Thomsen, M., Rygaard, J., Dano, K. and Zwiebel, J.A. (1992)LacZ transduced human breast cancer xenografts as anin vivo model for the study of invasion and metastasis.Eur. J. Cancer 28A, 1989–95.CrossRefPubMedGoogle Scholar
  20. Brünner, N., Boysen, B., Romer, J. and Spang-Thomsen, M. (1993) The nude mouse as anin vivo model for human breast invasion and metastasis.Breast Cancer Res. Treat. 24, 257–64.CrossRefPubMedGoogle Scholar
  21. Capecchi, M.R. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells.Cell 22, 479–88.CrossRefPubMedGoogle Scholar
  22. Chada, K., Magram, J., Raphael, K., Radice, G., Lacy, E. and Costantini, R. (1985) Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice.Nature 314, 377–80.CrossRefPubMedGoogle Scholar
  23. Cheng, T.C., Wallce, M.C., Merlie, J.P. and Olson, E.N. (1993) Separable regulatory elements governing myogenin transcription in mouse embryogenesis.Science 261, 215–8.PubMedGoogle Scholar
  24. Cheyette, T.E., Ip, T., Faber, S., Matsui, Y. and Chalkley, R. (1992) Characterization of the factors binding to a PEPCK gene upstream hypersensitive site with LCR activity.Nucl. Acids Res. 20, 3427–33.PubMedGoogle Scholar
  25. Choi, T., Huang, M., Gorman, C. and Jeanisch, R. (1991) A generic intron increases gene expression in transgenic mice.Mol. Cell. Biol. 11, 3070–4.PubMedGoogle Scholar
  26. Cory, S. and Adams, J.M. (1988) Transgenic mice and oncogenesis.Ann. Rev. Immunol. 6, 25–48.CrossRefGoogle Scholar
  27. Costantini, F. and Lacy, E. (1981) Introduction of a rabbit β-globin gene into the mouse germ line.Nature 294, 92–4.CrossRefPubMedGoogle Scholar
  28. Crenshaw, E.B., Kalla, K., Simmons, D.M., Swanson, L.W. and Rosenfeld, M.G. (1989) Cell-specific expression of the prolactin gene in transgenic mice is controlled by synergistic interactions between promoter and enhancer elements.Genes Dev. 3, 959–72.PubMedGoogle Scholar
  29. Diacumakos, E.G. (1973) Methods for micromanipulation of human somatic cells in culture.Meth. Cell Biol. 7, 287–311.Google Scholar
  30. DiLella, A.G., Hope, D.A., Chen, H., Trumbauer, M., Schwartz, R.J. and Smith, R.G. (1988) Utility of firefly luciferase as reporter gene for promoter activity in transgenic mice.Nucl. Acids Res. 16, 4159.PubMedGoogle Scholar
  31. Donoghue, M.J., Alvarez, J.D., Merlie, J.P. and Sanes, J.R. (1991) Fiber type-and position-dependent expression of a myosin light chain-CAT transgene detected with a novel histochemical stain for CAT.J. Cell. Biol. 115, 423–34.CrossRefPubMedGoogle Scholar
  32. Eccles, S., Sarner, N., Vidal, M., Cox, A. and Grosveld, F. (1990) Enhancer sequences located 3′ of the mouse immunoglobulin lambda locus specify high-level expression of an immunoglobulin lambda gene in B cells of transgenic mice.New Biol. 2, 801–11.PubMedGoogle Scholar
  33. Eckhardt, L.A. (1992) Immunoglobulin gene expression only in the right cells at the right time.FASEB J. 6, 2553–60.PubMedGoogle Scholar
  34. Engler, P., Haasch, D., Pinkert, C.A., Doglio, L., Glymour, M., Brinster, R. and Storb, U. (1991) A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci.Cell 65, 939–47.CrossRefPubMedGoogle Scholar
  35. Fields-Berry, S.C., Halliday, A.L. and Cepko, C.L. (1992) A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina.Proc. Natl Acad. Sci. USA 89, 693–7.PubMedGoogle Scholar
  36. Fiering, S.N., Roederer, M., Nolan, G.P., Micklem, D.R., Parks, D.R. and Herzenberg, L.A. (1991) Improve FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expression reporter gene constructs.Cytometry 12, 291–301.PubMedGoogle Scholar
  37. Figge, J., Wright, C., Collins, C.J., Roberts, T.M. and Livingston, D.M. (1988) Stringent regulation of stably integrated chloramphenicol acetyl transferase genes byE. coli lac repressor in monkey cells.Cell 52, 713–22.CrossRefPubMedGoogle Scholar
  38. Fire, A. (1992) Histochemical techniques for locatingEscherichia coli β-galactosidase activity in transgenic organisms.Genet. Anal. Tech. Appl. 9, 151–8.PubMedGoogle Scholar
  39. Fowlis, D.J. and Balmain, A. (1993) Oncogenes and tumour suppressor genes in transgenic mouse models of neoplasia.Eur. J. Cancer 29A, 638–45.PubMedGoogle Scholar
  40. Friedrich, G. and Soriano, P. (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice.Genes Dev. 5, 1513–23.PubMedGoogle Scholar
  41. Gage, F.H., Rosenberg, M.B., Tuszynski, M.H., Yoshida, K., Armstrong, D.M., Hayes, R.C. and Friedmann, T. (1990) Gene therapy in the CNS: intracerebral grafting of genetically modified cells.Prog. Brain Res. 86, 205–17.PubMedGoogle Scholar
  42. Glasser, S.W., Korfhagen, T.R., Wert, S.E., Bruno, M.D., McWilliams, K.M., Vorbroker, D.K. and Whitsett, J.A. (1991) Genetic element from human surfactant protein sp-C gene confers bronchiolar-alveolar cell specificity in transgenic mice.Am. J. Physiol. 261, L 349–56.Google Scholar
  43. Goldhamer, D.J., Faerman, A., Shani, M. and Emerson, C.P., Jr. (1992) Regulatory elements that control the lineage-specific expression of myoD.Science 256, 538–42.PubMedGoogle Scholar
  44. Gordon, J.W. and Ruddle, F.H. (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei.Science 214, 1244–6.PubMedGoogle Scholar
  45. Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. and Ruddle, F.H. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA.Proc. Natl Acad. Sci. USA 77, 7380–4.PubMedGoogle Scholar
  46. Goring, D.R., Rossant, J., Clapoff, S., Breitman, M.L. and Tsui, L.C. (1987) In situ detection of β-galactosidase in lenses of transgenic mice with a γ-crystallin/lacZ gene.Science 235, 456–8.PubMedGoogle Scholar
  47. Gorman, C.M., Moffat, L.F. and Howard, B.H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.Mol. Cell. Biol. 2, 1944–51.Google Scholar
  48. Gossen, J.A., de Leeuw, W.J.F., Tan, C.H.T., Zwarthoff, E.C., Berends, F., Lohman, P.H.M., Knook, D.L. and Vijg, J. (1989) Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo.Proc. Natl Acad. Sci. USA 86, 7971–5.PubMedGoogle Scholar
  49. Gossen, J.A., de Leeuw, W.J.F., Verwest, A., Lohman, P.H.M. and Vijg, J. (1991) High somatic mutation frequencies in alacZ transgene integrated on the mouse X-chromosome.Mutat. Res. 250, 423–9.PubMedGoogle Scholar
  50. Gouras, P., Du, J., Kjeldbye, H., Yamamoto, S. and Zack, D.J. (1992) Reconstruction of degenerate rd mouse retina by transplantation of transgenic photoreceptors.Invest. Ophthalmol. Vis. Sci. 33, 2579–86.PubMedGoogle Scholar
  51. Graessmann, A., Graessmann, M., Topp, W.C. and Botchan, M. (1979) Retransformation of a simian virus 40 revertant cell line, which is resistant to viral and DNA infections, by microinjection of viral DNA.J. Virol. 32, 989–94.PubMedGoogle Scholar
  52. Green, K.J., Stappenbeck, T.S., Parry, D.A. and Virata, M.L. (1992) Structure of desmoplakin and its association with intermediate filaments.J. Dermatol. 19, 765–9.PubMedGoogle Scholar
  53. Gunning, P., Leavitt, J., Muscat, G., Ng, S.Y. and Kedes, L. (1987) A human beta-actin expression vector system directs high-level accumulation of antisense transcripts.Proc. Natl Acad. Sci. USA 84, 4831–5.PubMedGoogle Scholar
  54. Gupta, S., Vemuru, R.P., Yerneni, P.R., Chowdhury, N.R., Jagtiani, R.K., Shafritz, D.A., Burk, R.D. and Chowdhury, J.R. (1993) Hepatocyte transplantation: prolonged cell survival followingex vivo manipulation and release from culture matrix components.Transplant. Proc. 25, 2370–4.PubMedGoogle Scholar
  55. Halliday, A.L. and Cepko, C.L. (1992) Generation and migration of cells in the developing striatum.Neuron 9, 15–26.CrossRefPubMedGoogle Scholar
  56. Hammer, R.E., Brinster, R.L. and Palmiter, R.D. (1985) Use of gene transfer to increase animal growth.Cold Spring Harbor Symp. Quant. Biol. 50, 379–87.PubMedGoogle Scholar
  57. Hammer, G.D., Fairchild-Huntress, V. and Low, M.J. (1990) Pituitary-specific and hormonally regulated gene expression directed by the rat proopiomelanocortin promoter in transgenic mice.Mol. Endocrinol. 4, 1689–97.PubMedGoogle Scholar
  58. Hanahan, D. (1988) Dissecting multistep tumorigenesis in transgenic mice.Annu. Rev. Genet. 22, 479–519.CrossRefPubMedGoogle Scholar
  59. Hanahan, D. (1989) Transgenic mice as probes into complex systems.Science 246, 1265–75.PubMedGoogle Scholar
  60. Harbers, K., Jähner, D., and Jaenisch, R. (1981) Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal.Nature 293, 540–2.CrossRefPubMedGoogle Scholar
  61. Harris, A.W., Langdon, W.Y., Alexander, W.S., Hariharan, I.K., Rosenbaum, H., Vaux, D., Webb, E., Bernard, O., Crawford, M., Abud, H., Adams, J.M. and Cory, S. (1988) Transgenic mouse models for hematopoietic tumorigenesis.Curr. Top. Microbiol. Immunol. 141, 82–93.PubMedGoogle Scholar
  62. Hoorn, A.J.W., Custer, L.L., Myhr, B.C., Brusick, D., Gossen, J. and Vijg, J. (1993) Detection of chemical mutagens using mutamouse: a transgenic mouse model.Mutagenesis 8, 7–10.PubMedGoogle Scholar
  63. Hughes, S.M. and Blau, H.M. (1990) Migration of myoblasts across basal lamina during skeletal muscle development.Nature 345, 350–3.CrossRefPubMedGoogle Scholar
  64. Khillan, J.S., Schmidt, A., Overbeek, P.A., de Crombrugghe, B. and Westphal, H. (1986) Developmental and tissue-specific expression directed by the α2 type I collagen promoter in transgenic mice.Proc. Natl Acad. Sci. USA 83, 725–9.PubMedGoogle Scholar
  65. Kjer-Nielsen, L., Holmberg, K., Perera, J.D. and McCluskey, J. (1992) Impaired expression of chimaeric major histocompatibility complex transgenes associated with plasmid sequences.Transgenic Res. 1, 182–7.PubMedGoogle Scholar
  66. Kohler, S.W., Provost, G.S., Fieck, A., Kretz, P.L., Bullock, W.O., Putman, D.L., Sorge, J.A., and Short, J.M. (1991a) Analysis of spontaneous and induced mutations in transgenic mice using a lambda ZAP/lac I shuttle vector.Environ. Mol. Mutagen. 18, 316–21.PubMedGoogle Scholar
  67. Kohler, S.W., Provost, G.S., Fieck, A., Kretz, P.L., Bullock, W.O., Sorge, J.A., Putman, D.L., and Short, J.M. (1991b) Spectra of spontaneous and mutagen-induced mutations in thelacI gene in transgenic mice.Proc. Natl Acad. Sci. USA 88, 7958–62.PubMedGoogle Scholar
  68. Kohler, S.W., Provost, G.S., Kretz, P.L., Dycaico, M.J., Sorge, J.A. and Short, J.M. (1990a) Development of a short-termin vivo mutagenesis assay: the effects of methylation on the recovery of a lambda phage shuttle vector from transgenic mice.Nucl. Acids Res. 18, 3007–13.PubMedGoogle Scholar
  69. Kohler, S.W., Provost, G.S., Kretz, P.L., Fieck, A., Sorge, J.A. and Short, J.M. (1990b) The use of transgenic mice for short-term,in vivo mutagenicity testing.Genet. Anal. Tech. Appl. 7, 212–8.CrossRefPubMedGoogle Scholar
  70. Korn, R., Schoor, M., Neuhaus, H., Henseling, U., Soininen, R., Zachgo, J. and Gossler, A. (1992) Enhancer trap integrations in mouse embryonic stem cells give rise to staining patterns in chimaeric embryos with a high frequency and detect endogenous genes.Mech. Dev. 39, 95–109.CrossRefPubMedGoogle Scholar
  71. Kozak, M. (1981) Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes.Nucl. Acids Res. 9, 5233–62.PubMedGoogle Scholar
  72. Krimpenfort, P., Jong, R. de, Uematsu, Y., Dembic, Z., Ryser, S., Boehmer, H. von, Steinmetz, M. and Berns, A. (1988) Transcription of T cell receptor β-chain genes is controlled by a downstream regulatory element.EMBO J. 7, 745–50.PubMedGoogle Scholar
  73. Krumlauf, R., Hammer, R.E., Brinster, R.L., Chapman, V.M. and Tilghman, S. (1985a) Regulated expression of α-fetoprotein genes in transgenic mice.Cold Spring Harbor Symp. Quant. Biol. 50, 371–8.PubMedGoogle Scholar
  74. Krumlauf, R., Hammer, R.E., Tilghman, S.M. and Brinster, R.L. (1985b) Developmental regulation of α-fetoprotein genes in transgenic mice.Mol. Cell. Biol. 5, 1639–48.PubMedGoogle Scholar
  75. Lacy, E., Roberts, S., Evans, E.P., Burtenshaw, M.D. and Costantini, F.D. (1983) A foreign β-blobin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues.Cell 34, 343–58.CrossRefPubMedGoogle Scholar
  76. Lahoz, E.G., de Haro, M.S.L., Nieto, A. and Esponda, P. (1991) Use of puromycinN-acetyltransferase (PAC) as a new reporter gene in transgenic animals.Nucl. Acids Res. 19, 3465.PubMedGoogle Scholar
  77. Lahoz, E.G., de Haro, M.S.L., Esponda, P. and Nieto, A. (1992) Tissue-specific and hormonally regulated expression of the puromycinN-acetyltransferase-encoding gene under control of the rabbit uteroglobin promoter in transgenic mice.Gene 117, 255–8.CrossRefPubMedGoogle Scholar
  78. Lakso, M., Sauer, B., Mosinger, B. Jr., Lee, E.J., Manning, R.W., Yu, S.H., Mulder, K.L. and Westphal, H. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice.Proc. Natl Acad. Sci. USA 89, 6232–6.PubMedGoogle Scholar
  79. Lem, J., Applebury, M.L., Falk, J.D., Flannery, J.G. and Simon, M.I. (1991) Tissue-specific and developmental regulation of rod opsin chimaeric genes in transgenic mice.Neuron 6, 201–10.CrossRefPubMedGoogle Scholar
  80. Li, Z., Marchand, P., Humbert, J., Babinet, C. and Paulin, D. (1993) Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice.Development 117, 947–59.PubMedGoogle Scholar
  81. Libermann, T.A. and Baltimore, D. (1991) Transcriptional regulation of immunoglobulin gene expression. In Cohen P. and Foulkes, J.G. eds.,The Hormonal Control of Gene Transcription, pp. 399–421. Amsterdam: Elsevier.Google Scholar
  82. Lin, T.P. (1966) Microinjection of mouse eggs.Science 151 333–7.PubMedGoogle Scholar
  83. Lin, W.C. and Culp, L.A. (1991) Selectable plasmid vectors with alternative and ultrasensitive histochemical marker genes.Bio Techniques 11, 344–51.Google Scholar
  84. Lin, W.C. and Culp, L.A. (1992) Altered establishment/clearance mechanisms during experimental micrometastasis which live and/or disabled bacteriallacZ-tagged tumor cells.Invasion Metastasis 12, 197–209.PubMedGoogle Scholar
  85. Lin, W.C., Pretlow, T.P., Pretlow II, T.G. and Culp, L.A. (1990) BacteriallacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression.Cancer Res. 50, 2808–17.PubMedGoogle Scholar
  86. Lin, W.C., Pretlow, T.P., Pretlow II, T.G. and Culp, L.A. (1992) High-resolution analyses of two different classes of tumor cellsin situ tagged with alternative histochemical marker genes.Am. J. Pathol. 141, 1331–42.PubMedGoogle Scholar
  87. Lin, W.C., O'Connor, K.L. and Culp, L.A. (1993) Complementation of two related tumor cell classes during experimental metastasis tagged with different histochemical marker genes.Br. J. Cancer,67, 910–21.PubMedGoogle Scholar
  88. Liu, H.S., Feliciano, E.S. and Stambrook, P.J. (1989) Cytochemical observation of regulated bacterial beta-galactosidase gene expression in mammalian cells.Proc. Natl Acad. Sci. USA 86, 9951–5.PubMedGoogle Scholar
  89. Liu, H.S., Scrable, H., Villaret, D.B., Lieberman, M.A. and Stambrook, P.J. (1992) Control of Ha-ras-mediated mammalian cell transformation byEscherichia coli, regulatory elements.Cancer Res. 52, 983–9.PubMedGoogle Scholar
  90. Malling, H.V. and Burkhart, J.G. (1992) Comparison of mutation frequencies obtained using transgenes and specific-locus mutation systems in male mouse germ cells.Mutation Res. 279, 149–51.CrossRefPubMedGoogle Scholar
  91. Matsuoka, M., Nagawa, F., Okazaki, K., Kingsbury, L., Yoshida, K., Müller, U., Larue, D.T., Winer, J.A. and Sakano, H. (1991) Detection of somatic DNA recombination in the transgenic mouse brain.Science 254, 81–6.PubMedGoogle Scholar
  92. McClintock, B. (1950) The origin and behavior of mutable loci in maize.Proc. Natl Acad. Sci. USA 36, 344–55.PubMedGoogle Scholar
  93. McClintock, B. (1965) The control of gene action in maize.Brookhaven Symp. Biol. 18, 162–84.Google Scholar
  94. McGrane, M.M., Yun, J.S., Moorman, A.F., Lamers, W.H., Hendrick, G.K., Arafah, B.M., Park, E.A., Wagner, T.E. and Hanson, R.W. (1990) Metabolic effects of developmental, tissue, and cell specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice.J. Biol. Chem. 265, 22371–9.PubMedGoogle Scholar
  95. Mendel, G. (1866) Versuche über pflangen-hybriden.Verh. Naturf. Verein Brünn 4, 3–47. Translation printed in Peters, J.A. ed. (1959)Classic Papers in Genetics, Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  96. Miller, J.H. (1972) Assay of β-galactosidase. In Miller, J.H. ed.,Experiments in Molecular Genetics, pp. 352–5. Cold Spring Harbor, N.Y.: Coldspring Harbor Laboratory Press.Google Scholar
  97. Morgan, T.H. (1910) Sex linked inheritance inDrosophila.Science 32, 120–2.Google Scholar
  98. Morrey, J.D., Bourn, S.M., Bunch, T.D., Sidwell, R.W. and Rosen, C.A. (1992) HIV-1 LTR activation model: evaluation of various agents in skin of transgenic mice.J. Acquir. Immune Defic. Syndr. 5, 1195–203.PubMedGoogle Scholar
  99. Murti, J.R. and Schimenti, J.C. (1991) Microwave-accelerated fixation andlacZ activity staining of testicular cells in transgenic mice.Anal. Biochem. 198, 92–6.CrossRefPubMedGoogle Scholar
  100. Myhr, B.C. (1991) Validation studies with mutaTM mouse: a transgenic mouse model for detecting mutationsin vivo.Environ. Mol. Mutagen 18, 308–15.PubMedGoogle Scholar
  101. Neumeyer, A.M., DiGregorio, D.M. and Brown, R.H. Jr. (1992) Arterial delivery of myoblasts to skeletal muscle.Neurology 42, 2258–62.PubMedGoogle Scholar
  102. Nicholson, E.B., Concaugh, E.A. and Mobley, H.L.T. (1991) Proteus mirabilis urease: use of aureA-lacZ fusion demonstrates that induction is highly specific for urea.Infect. Immun. 59, 3360–5.PubMedGoogle Scholar
  103. Nilsson, E., and Lendahl, U. (1993) Transient expression of a human β-actin promoter/lacZ gene introduced into mouse embryos correlates with a low degree of methylation.Mol. Reprod. Dev. 34, 149–57.CrossRefPubMedGoogle Scholar
  104. Nolan, G.P., Fiering, S., Nicolas, J.F., and Herzenberg, L.A. (1988) Fluorescence-activated cell analysis and sorting of viable mammalian cells based on β-d-galactosidase activity after transduction ofEscherichia coli lacZ.Proc. Natl. Acad. Sci. USA 85, 2603–7.PubMedGoogle Scholar
  105. Orban, P.C., Chui, D. and Marth, J.D. (1992) Tissue- and sitespecific DNA recombination in transgenic mice.Proc. Natl Acad. Sci. USA 89, 6861–5.PubMedGoogle Scholar
  106. Ornitz, D.M., Moreadith, R.W. and Leder, P. (1991) Binary system for regulating transgene expression in mice: targetingint-2 gene expression with yeast GAL4/UAS control elements.Proc. Natl Acad. Sci. USA 88, 698–702.PubMedGoogle Scholar
  107. Osborn, L., Rosenberg, M.P., Keller, S.A., Ting, C.N. and Meisler, M.H. (1988) Insulin response of a hybrid amylase/CAT gene in transgenic mice.J. Biol. Chem. 263, 16519–22.PubMedGoogle Scholar
  108. Overbeek, P.A., Lai, S.P., Van Quill, K.R., and Westphal, H. (1986) Tissue-specific expression in transgenic mice of a fused gene containing RSV terminal sequences.Science 231, 1574–7.PubMedGoogle Scholar
  109. Palmiter, R.D. and Brinster, R.L. (1986) Germ-line transformation of mice.Ann. Rev. Genet. 20, 465–99.CrossRefPubMedGoogle Scholar
  110. Palmiter, R.D., Chen, H.Y. and Brinster, R.L. (1982) Differential regulation of metallothionein-thymidine kinase fusion genes in transgenic mice and their offspring.Cell 29, 701–10.CrossRefPubMedGoogle Scholar
  111. Palmiter, R.D., Sandgren, E.P., Avarbock, M.R., Allen, D.D. and Brinster, R.L. (1991) Heterologous introns can enhance expression of transgenes in mice.Proc. Natl Acad. Sci. USA 88, 478–82.PubMedGoogle Scholar
  112. Pondel, M.D., Proudfoot, N.J., Whitelaw, C. and Whitelaw, E. (1992) The developmental regulation of the human ζ-globin gene in transgenic mice emplohing β-galactosidase as a reporter gene.Nucleic Acids Res. 20, 5655–60.PubMedGoogle Scholar
  113. Pothier, F., Ouellet, M., Julien, J.P. and Guérin, S.L. (1992) An improved CAT assay for promoter analysis in either transgenic mice or tissue culture cells.DNA Cell Biol. 11, 83–90.PubMedGoogle Scholar
  114. Reik, W., Collick, A., Norris, M.L., Barton, S.C. and Surani, M.A.H. (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice.Nature 328, 248–51.CrossRefPubMedGoogle Scholar
  115. Russell, L.B., Selby, P.B., von Halle, E., Sheridan, W. and Valcovic, L. (1981) Use of the mouse spot test in chemical mutagenesis: interpretation of past data and recommendations for future work.Mutat. Res. 86, 355–79.PubMedGoogle Scholar
  116. Salmon, A.M. and Changeux, J.P. (1992) Regulation of an acetylcholine receptorlacZ transgene by muscle innervation.NeuroReport 3, 973–6.PubMedGoogle Scholar
  117. Sanes, J.R., Johnson, Y.R., Kotzbauer, P.T., Mudd, J., Hanley, T., Martinou, J.C. and Merlie, J.P. (1991) Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers.Development 113, 1181–91.PubMedGoogle Scholar
  118. Sapienza, C., Paquette, J., Tran, T.H. and Peterson, A. (1989) Epigenetic and genetic factors affect transgene methylation imprinting.Development 107, 165–8.PubMedGoogle Scholar
  119. Sasaki, H., Nakazato, M., Saraiva, M.J.M., Matsuo, H. and Sakaki, Y. (1989) Activity of a metallothionein-transthyretin fusion gene in transgenic mice. Possible effect of plasmid sequences on tissue-specific expression.Mol. Biol. Med. 6, 345–53.PubMedGoogle Scholar
  120. Sasaki, H., Hamada, T., Ueda, T., Seki, R., Higashinakagawa, T. and Sakaki, Y. (1991) Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting.Development 111, 573–81.PubMedGoogle Scholar
  121. Sauer, B. and Henderson, N. (1990) Targeted insertion of exogeneous DNA into the eukaryotic genome by the Cre recombinase.New Biol. 2, 441–9.PubMedGoogle Scholar
  122. Seed, B. and Sheen, J.Y. (1988) A simple phase-extraction assay for chloramphenicol acetyltransferase activity.Gene 67, 271–7.CrossRefPubMedGoogle Scholar
  123. Shani, M. (1986) Tissue-specific and developmentally regulated expression of a chimeric actin-globin gene in transgenic mice.Mol. Cell. Biol. 6, 2624–31.PubMedGoogle Scholar
  124. Shaw, W.V. (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. In Hash, J.H. ed.,Methods in Enzymology, vol.43, Antibiotics, pp. 737–55. New York: Academic Press, Inc.Google Scholar
  125. Shaw-White, J.R., Denko, N., Albers, L. Doetschman, T.C. and Stringer, J.R. (1993) Expression of thelacZ gene targeted to the HPRT locus in embryonic stem cells and their derivatives.Transgenic Res. 2, 1–13.PubMedGoogle Scholar
  126. Shimohama, S., Rosenberg, M.B., Fagan, A.M., Wolff, J.A., Short, M.P., Breakefield, X.O., Friedmann, T. and Gage, F.H. (1989) Grafting genetically modified cells into the rat brain: characteristics ofE. coli beta-galactosidase as a reporter gene.Brain Res. Mol. Brain Res. 5, 271–8.CrossRefPubMedGoogle Scholar
  127. Short, M.P., Choi, B.C., Lee, J.K., Malick, A., Breakefield, X.O. and Martuza, R.L. (1990) Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line.J. Neurosci. Res. 27, 427–39.CrossRefPubMedGoogle Scholar
  128. Smeyne, R.J., Curran, T. and Morgan, J.I. (1992a) Temporal and spatial expression of afos-lacZ transgene in the developing nervous system.Brain Res. Mol. Brain Res. 16, 158–62.CrossRefPubMedGoogle Scholar
  129. Smeyne, R.J., Schilling, K., Robertson, L., Luk, D., Oberdick, J., Curran, T. and Morgan, J.I. (1992b)Fos-lacZ transgenic mice: mapping sites of gene induction in the central nervous system.Neuron 8, 13–23.CrossRefPubMedGoogle Scholar
  130. Smeyne, R.J., Schilling, K., Oberdick, J., Robertson, L., Luk, D., Curran, T. and Morgan, J.I. (1993a) Afos-lacZ transgenic mouse that can be used for neuroanatomic mapping.Adv. Neurol 59, 285–91.PubMedGoogle Scholar
  131. Smeyne, R.J., Vendrell, M., Hayward, M., Baker, S.J., Miao, G.G., Schilling, K., Robertson, L.M., Curran, T. and Morgan, J.I. (1993b) Continuous c-fos expression precedes programmed cell deathin vivo.Nature 363, 166–9.CrossRefPubMedGoogle Scholar
  132. Snyder, E.Y., Deitcher, D.L., Walsh, C., Arnold-Aldea, S., Hartwieg, E.A. and Cepko, C.L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum.Cell 68, 33–51.CrossRefPubMedGoogle Scholar
  133. Soininen, R., Schoor, M., Henseling, U., Tepe, C., Kisters-Woike, B., Rossant, J. and Gossler, A. (1992) The mouseEnhancer trap locus 1 (Etl-1): a novel mammalian gene related toDrosophila and yeast transcriptional regulator genes.Mech. Dev. 39, 111–23.CrossRefPubMedGoogle Scholar
  134. Swanson, M.S., Carlson, M. and Winston, F. (1990) SPT6, an essential gene that affects transcription inSaccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus.Mol. Cell. Biol. 10, 4935–41.PubMedGoogle Scholar
  135. Swift, G.H., Kruse, F., MacDonald, R.J. and Hammer, R.E. (1989) Differential requirements for cell-specific elastase I enhancer domains in transfected cells and transgenic mice.Genes Dev. 3, 687–96.PubMedGoogle Scholar
  136. Talbot, D., Collis, P., Antoniou, M., Vidal, M., Grosveld, F. and Greaves, D.R. (1989) A dominant control region from the human β-globin locus conferring integration, site-independent gene expression.Nature 338, 352–5.CrossRefPubMedGoogle Scholar
  137. Tan, S.S. (1991) Liver-specific and position-effect expression of a retinol-binding protein-lacZ fusion gene (RBP-lacZ) in transgenic mice.Dev. Biol. 146, 24–37.CrossRefPubMedGoogle Scholar
  138. Tepper, R.I., Levinson, D.A., Stanger, B.Z., Campos-Torres, J., Abbas, A.K. and Leder, P. (1990) IL-4 induced allergic-like inflammatory disease and alters T cell development in transgenic mice.Cell 62, 457–67.CrossRefPubMedGoogle Scholar
  139. Thorey, I.S., Pedersen, R.A., Linney, E. and Oshima, R.G. (1992) Parent-specific expression of a human keratin 18/β-galactosidase fusion gene in transgenic mice.Dev. Dyn. 195, 100–12.PubMedGoogle Scholar
  140. Thorey, I.S., Meneses, J.J., Neznanov, N., Kulesh, D.A., Pedersen, R.A. and Oshima, R.G. (1993) Embryonic expression of human keratin 18 and keratin 18/β-galactosidase fusion genes in transgenic mice.Developmental Biology,160, 519–34.CrossRefPubMedGoogle Scholar
  141. Ting, C.N., Rosenberg, M.P., Snow, C.M., Samuelson, L.C. and Meisler, M.H. (1992) Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene.Genes Dev. 6, 1457–65.PubMedGoogle Scholar
  142. Townes, T.M., Lingrel, J.B., Chen, H.Y., Brinster, R.L. and Palmiter, R.D. (1985) Erythroid-specific expression of human β-globin genes in transgenic mice.EMBO J. 4, 1715–23.PubMedGoogle Scholar
  143. Vogels, R., Charité, J., Graaff, W. de and Deschamps, J. (1993) Proximalcis-acting elements cooperate to setHoxb-7 (Hox-2.3) expression boundaries in transgenic mice.Development 118, 71–82.PubMedGoogle Scholar
  144. Wagner, E.F., Stewart, T.A., Mintz, B. (1981) The human β-globin gene and a functional viral thymidine kinase gene in developing mice.Proc. Natl Acad. Sci. USA 78, 5016–20.PubMedGoogle Scholar
  145. Wagner, T.E., Hoppe, P.C., Jollick, J.D., Scholl, D.R., Hodinka, R.L. and Gault, J.B. (1981) Microinjection of a rabbit β-globin gene into zygotes and its subsequent expression in adult mice and their offspring.Proc. Natl Acad. Sci. USA 78, 6376–80.PubMedGoogle Scholar
  146. Wallenfels, K. and Weil, R. (1972) β-galactosidase. In Boyer, P.D. ed.,The Enzymes, Vol. 7, pp. 618–63. New York: Academic, Inc.Google Scholar
  147. Watt, D.J., Karasinski, J. and England, M.A. (1993) Migration oflacZ positive cells from the tibialis anterior to the extensor digitorum longus muscle of the X-linked muscular dystrophic (mdx) mouse.J. Muscle Res. Cell Motil. 14, 121–32.CrossRefPubMedGoogle Scholar
  148. Weis, J., Fine, S.M., David, C., Savarirayan, S. and Sanes, J.R. (1991) Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions.J. Cell. Biol. 113, 1385–97.CrossRefPubMedGoogle Scholar
  149. Wet, J.R. de, Wood, K.V., Deluca, M., Helinski, D.R. and Subramani, S. (1987) Firefly luciferase gene: structure and expression in mammalian cells.Mol. Cell. Biol. 7, 725–37.PubMedGoogle Scholar
  150. Wikenheiser, K.A., Clark, J.C., Linnoila, R.I., Stahlman, M.T. and Whitsett, J.A. (1992) Simian virus 40 large T antigen directed by transcriptional elements of the human surfactant protein C gene produces pulmonary adenocarcinomas in transgenic mice.Cancer Res. 52, 5342–52.PubMedGoogle Scholar
  151. Winton, D.J., Blount, M.A. and Ponder, B.A.J. (1988) A clonal marker induced by mutation in mouse intestinal epithelium.Nature 333, 463–6.CrossRefPubMedGoogle Scholar
  152. Wisniewski, J., Malezewski, M., Krawczyk, Z. and Gedamu, L. (1993) An upstream region of the rat spermatogenesis-specific heat-shock-like Hst70 gene confers testis-specific expression in transgenic mice.Eur. J. Biochem. 212, 137–43.CrossRefPubMedGoogle Scholar
  153. Wispe, J.R., Warner, B.B., Clark, J.C., Dey, C.R., Neuman, J., Glasser, S.W., Crapo, J.D., Chang, L.Y., and Whitsett, J.A. (1992) Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury.J. Biol. Chem. 267, 23937–41.PubMedGoogle Scholar
  154. Wu, M.C. and Davidson, N. (1987) The induciblelac operator-repressor system is functional in mammalian cells.Cell 48, 555–66.CrossRefPubMedGoogle Scholar
  155. Zimmer, A. and Zimmer A. (1992) Induction of a RAR β2-lacZ transgene by retinoic acid reflects the neuromeric organization of the central nervous system.Development 116, 977–83.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Cunqi Cui
    • 1
  • Maqsood A. Wani
    • 1
  • David Wight
    • 2
  • John Kopchick
    • 2
  • Peter J. Stambrook
    • 1
  1. 1.Department of Anatomy and Cell BiologyUniversity of CincinnatiCincinnatiUSA
  2. 2.Edison InstituteOhio UniversityAthensUSA

Personalised recommendations