Advertisement

Archives of Toxicology

, Volume 67, Issue 2, pp 79–84 | Cite as

Cholinesterase reactivation in organophosphorus poisoned patients depends on the plasma concentrations of the oxime pralidoxime methylsulphate and of the organophosphate

  • J. L. Willems
  • H. C. De Bisschop
  • A. G. Verstraete
  • C. Declerck
  • Y. Christiaens
  • P. Vanscheeuwyck
  • W. A. Buylaert
  • D. Vogelaers
  • F. Colardyn
Original Investigations

Abstract

We measured in nine patients, poisoned by organophosphorus agents (ethyl parathion, ethyl and methyl parathion, dimethoate, or brompphos), erythrocyte and serum cholinesterase activities, and plasma concentrations of the organophosphorus agent. These patients were treated with pralidoxime methylsulphate (ContrathionR), administered as a bolus injection of 4.42 mg.kg−1 followed by a continuous infusion of 2.14 mg.kg−1/h, a dose regimen calculated to obtain the presumed “therapeutic” plasma level of 4 mg.l−1, or by a multiple of this infusion rate. Oxime plasma concentrations were also measured. The organophosphorus agent was still detectable in some patients after several days or weeks. In the patients with ethyl and methyl parathion poisoning, enzyme reactivation could be obtained in some at oxime concentrations as low as 2.88 mg.l−1; in others, however, oxime concentrations as high as 14.6 mg.l−1 remained without effect. The therapeutic effect of the oxime seemed to depend on the plasma concentrations of ethyl and methyl parathion, enzyme reactivation being absent as long as these concentrations remained above 30 μg.l−1. The bromophos poisoning was rather mild, cholinesterases were moderately inhibited and increased under oxime therapy. The omethoate inhibited enzyme could not be reactivated.

Key words

Pralidoxime methylsulphate Organophosphorus agent Plasma concentration Cholinesterase reactivation Poisoning Man 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besser R, Gutman L, Dillmann U, Weilemann LS, Hopf HC (1989) End-plate dysfunction in acute organophosphate intoxication. Neurology 39: 561–567PubMedGoogle Scholar
  2. Boelcke G, Butigan N, Davar H, Erdmann WD, Gaaz JW, Nenner M (1970) Neue Erfahrungen bei der toxicologisch kontrollierten Therapie einer ungewöhnlich schweren Vergiftung mit Nitrostigmin (E605 forteR). Deutsche Mediz Wchschr 95: 2516–2521Google Scholar
  3. Braeckman RA (1982) Kinetische Studie van methylparathion en parathion bij de hond. Doctoral Thesis, University of Ghent School of PharmacyGoogle Scholar
  4. Braeckman RA, Godefroot MG, Blondeel GM, Belpaire FM, Willems JL (1980) Kinetic analysis of the fate of methyl parathion in the dog. Arch Toxicol 43: 263–271CrossRefPubMedGoogle Scholar
  5. Coye MJ, Barnett PG, Midtling JE, Velasco AR, Romero P, Clements CL, Rose TG (1987) Clinical confirmation of organophosphate poisoning by serial cholinesterase analyses. Arch Int Med 147: 438–442CrossRefGoogle Scholar
  6. De Kort WL, Kiestra SH, Sangster B (1988) The use of atropine and oximes in organophosphate intoxications: a modified approach. Clin Toxicol 26: 199–208Google Scholar
  7. De Potter M, Muller R, Willems J (1978) A method for the determination of some organophosphorus insecticides in human serum. Chromatographia 11: 220–222Google Scholar
  8. De Schrijver E, De Reu L, Willems J (1985) Determination of methyl paraoxon in dog plasma by reversed-phase high performance liquid chromatography. J Chromatogr 388: 389–395Google Scholar
  9. De Schrijver E, De Reu L, Belpaire F, Willems J (1987) Toxicokinetics of methyl paraoxon in the dog. Arch Toxicol 59: 319–322CrossRefPubMedGoogle Scholar
  10. Eigenberg DA, Pazdernik TL, Doull J (1983) Hemoperfusion and pharmacokinetic studies with parathion and paraoxon in the rat and dog. Drug Metab Dispos 11: 366–370PubMedGoogle Scholar
  11. Ellman GL, Courtney DK, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Bioch Pharmacol 7: 88–95CrossRefGoogle Scholar
  12. Erdmann WD, Zech R, Franke P, Bosse I (1966) Zur Frage der therapeutischen Wirksamkeit von Esterase-Reaktivatoren bei der Vergiftung mit Dimethoat. Arzneimittelforschung 16: 492–494PubMedGoogle Scholar
  13. Grob D (1963) Anticholinesterase intoxication in man and its treatment. In: Koelle GB (ed) Cholinesterases and anticholinesterase agents. Handbuch der experimentellen Pharmakologie. Springer Verlag Berlin, Göttingen, Heidelberg, pp 989–1027Google Scholar
  14. Kusic R, Jovanovic D, Randjelovic S, Joksovic D, Todorovic V, Boskovic B, Jokanovic M, Vojvodic V (1991) HI-6 in man: efficacy of the oxime in poisoning by organophosphorus insecticides. Hum Exper Toxicol 10: 113–118Google Scholar
  15. Mahieu P, Hassoun A, Van Binst R, Lauwerijs R, Deheneffe Y (1982) Severe and prolonged poisoning by Fenthion. Significance of the determination of anticholinesterase capacity of plasma. J Toxicol Clin Toxicol 19: 425–432PubMedGoogle Scholar
  16. Mañes-Vinuesa J, Molto Cartés JC, Iguelda Canas C, Font Pérez G (1989) Isolation and concentration of organophosphorus pesticides from water using a C18 reversed phase. J Chromatogr 472: 365–370CrossRefGoogle Scholar
  17. Minton NA, Murray VSG (1988) A review of organophosphate poisoning. Med Toxicol 3: 350–375Google Scholar
  18. Namba T, Nolte CT, Jackrel J, Grob D (1971) Poisoning due to organophosphate insecticides. Acute and chronic manifestations. Am J Med 50: 475–492CrossRefPubMedGoogle Scholar
  19. Nielsen P, Friis C, Gyrd-Hansen N, Kraul I (1991) Disposition of parathion in neonatal and young pigs. Pharmacol Toxicol 68: 233–237PubMedGoogle Scholar
  20. Peña-Egido MJ, Rivas-Gonzalo JC, Mariño-Hernandez EL (1988) Toxicokinetics of parathion in the rabbit. Arch Toxicol 61: 196–200CrossRefPubMedGoogle Scholar
  21. Senanayake N, Karalliedde L (1987) Neurotoxic effects of organophosphorus insecticides. An intermediate syndrome. N Engl J Med 316: 761–763PubMedGoogle Scholar
  22. Shiloff JD, Clement JG (1987) Comparison of serum concentrations of the acetylcholinesterase oxime reactivators HI-6, obidoxime, and PAM to efficacy against sarin (isopropyl methylphosphonofluoridate) poisoning in rats. Toxicol Appl Pharmacol 89: 278–280CrossRefPubMedGoogle Scholar
  23. Sundwall A (1961) Minimum concentrations of N-methylpyridinium-2-aldoxime methane sulphonate (P2S) which reverse neuromuscular block. Biochem Pharmacol 8: 413–417CrossRefPubMedGoogle Scholar
  24. Trundle D, Marcial G (1988) Detection of cholinesterase inhibition, the significance of cholinesterase measurements. Ann Clin Lab Sci 18: 345–352PubMedGoogle Scholar
  25. Willems JL (1981) Poisoning by organophosphate insecticides: analysis of 53 human cases with regard to management and drug treatment. Acta Med Milit Belg 134: 7–14Google Scholar
  26. Willems JL (1992) Pralidoxime methylsulphate in the treatment of organophosphorus poisoning. JEUR (in press)Google Scholar
  27. Willems JL, Langenberg JP, Verstraete AG, De Loose M, Vanhaese-broeck B, Goethals G, Belpaire FM, Buylaert WA, Vogelaers D, Colardyn F (1992) Plasma concentrations of pralidoxime methylsulphate in organophosphorus poisoned patients. Arch Toxicol 66: 260–266PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. L. Willems
    • 1
  • H. C. De Bisschop
    • 5
  • A. G. Verstraete
    • 2
  • C. Declerck
    • 5
  • Y. Christiaens
    • 1
  • P. Vanscheeuwyck
    • 1
  • W. A. Buylaert
    • 3
  • D. Vogelaers
    • 4
  • F. Colardyn
    • 4
  1. 1.Heymans Institute of PharmacologyUniversity of Ghent, Medical SchoolGhentBelgium
  2. 2.Department of Clinical ChemistryBelgium
  3. 3.Emergency DepartmentBelgium
  4. 4.Intensive Care Unit of the University ClinicGhentBelgium
  5. 5.Royal Military AcademyBrusselsBelgium

Personalised recommendations