Transgenic Research

, Volume 3, Issue 5, pp 317–325 | Cite as

T-DNA-insert-independent mutations induced in transformed plant cells duringAgrobacterium co-cultivation

  • László Márton
  • Milan Hrouda
  • Attila Pécsváradi
  • Mihály Czako


Transformation frequencies were determined for 1n, 2n, and 4n Nicotiana plumbaginifolia protoplast cultures inAgrobacterium-mediated gene transfer experiments. An unexpected large drop (50%) in plating efficiencies was observed in the non-selected (control) 1n populations after transformation treatment with virulent strains. This effect was not observed in the 2n or 4n cultures or in the 1n cultures when treated with avirulent bacteria. The mortality was disproportionally high and could not be explained by the low (0.1–0.5%) transformation efficiency in the 1n population, indicating mutagenesis of the cell populations independently from the T-DNA insertions. Mutagenesis was also indicated in gene tagging experiments where nitrate reductase-deficient (NR) mutants were selected from haploidNicotiana plumbaginifolia protoplasts, as well as from leaf disc cultures or protoplasts of diploid plants that were heterozygotic for a mutation either in the NR apoenzyme gene (nia/wt) or one of the molybdenum-containing cofactor genes (cnxA/wt), afterAgrobacterium co-cultivation. The chlorate-resistant isolates were tested for the T-DNA-specific kanamycin resistance trait only after NR-deficiency had been established. Thirty-nine independent NR-deficient mutants were analysed further by Southern blot hybridization. There was no indication of integrated T-DNA sequences in the mutated NR genes, despite the fact that NR-deficient cells were found more frequently in cell populations which became transformed during the treatment than in the populations which did not. These observations suggest that transformation-competent cells undergo mutagenesis during theAgrobacterium gene transfer process not only as a result of stable integration events, but also through accompanying events that do not result in major changes in the mutated loci. The nature of these changes at the molecular level remains to be elucidated.


Agrobacterium mutagenesis Nicotiana plumbaginifolia nitrate reductase ploidy transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, G. (1987) Binary vectors.Methods Enzymol. 153, 292–305.Google Scholar
  2. An, G., Watson, B.D., Stachel, S., Gordon, M.P. and Nester, E.W. (1985) New cloning vehicles for transformation of higher plants.EMBO J. 4, 277–84.Google Scholar
  3. An, G., Ebert, P.R., Mitra, A. and Ha, S.B. (1988) Binary vectors. In: Gelvin, S.B. and Schilperoort, R.A. eds,Plant Molecular Biology Manual, pp. A3/1–19. Dordrecht: Kluwer Academic Publishers.Google Scholar
  4. Andre, D., Colau, D., Schell, J., Van Montagu, M. and Hernalsteens, J.P. (1986) Gene tagging in plants by T-DNA insertion mutagen that creates APH3′II-plant gene fusions.Mol. Gen. Genet. 204, 512–8.Google Scholar
  5. Biasini, G. and Márton, L. (1985) A rapid assay for genetic complementation of nitrate reductase deficiency via bulk protoplast fusion.Mol. Gen. Genet. 198, 353–5.Google Scholar
  6. Boyer, H.W. and Roulland-Dussoix, D. (1969) A complementation analysis of the restriction and modification of DNA inEscherichia coli.J. Mol. Biol. 41, 459–72.Google Scholar
  7. Calza, R., Huttner, E., Vincentz, M., Rouzé, P., Galangau, F., Vaucheret, H., Chérel, I., Meyer, C., Kronenberger, J. and Caboche, M. (1987) Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants.Mol. Gen. Genet. 209, 552–62.Google Scholar
  8. Christie, P.J., Ward, J.E., Winans, S.C. and Nester, E.W. (1988) TheAgrobacterium tumefaciens virE2 product is a single-stranded-DNA-binding protein that associates with T-DNA.J. Bacteriol. 170, 2659–67.Google Scholar
  9. Chyi, Y.S., Jorgensen, R.A., Goldstein, D., Tanksley, S.D. and Loaiza-Figuerosa, F. (1988) Locations and stability ofAgrobacterium-mediated T-DNA insertions in theLycopersicon genome.Mol. Gen. Genet. 204, 64–9.Google Scholar
  10. Czakó, M. and Márton, L. (1986) Independent integration and seed-transmission of the TR-DNA of the octopine Ti plasmid pTi Ach5 inNicotiana plumbaginifolia.Pl. Mol. Biol. 6, 101–9.Google Scholar
  11. Deroles, S.C. and Gardner, R.C. (1988) Analysis of the T-DNA structure in a large number of transgenic petunias generated byAgrobacterium-mediated transformation.Pl. Mol. Biol. 11, 365–7.Google Scholar
  12. DeVos, G., DeBeuckeleer, M., Van Montagu, M. and Schell, J. (1981) Restriction endonuclease mapping of the octopine tumour-inducing plasmid pTi Ach5 ofAgrobacterium tumefaciens.Plasmid 6, 249–53.Google Scholar
  13. Feinberg, A.P. and Vogelstein, B. (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 132, 6–13.Google Scholar
  14. Feldmann, K.A. (1991) T-DNA insertion mutagenesis inArabidopsis: mutational spectrum.Pl. J. 1, 71–82.Google Scholar
  15. Gabard, J., Marion-Poll, A., Chérel, I., Meyer, C., Müller, A.J. and Caboche, M. (1987) Isolation and characterization ofNicotiana plumbaginifolia nitrate reductase deficient mutants: genetic and biochemical analysis of thenia complementation group.Mol. Gen. Genet. 209, 596–606.Google Scholar
  16. Gheysen, G., Herman, L., Breyne, P., Gielen, J., Van Montagu, M. and Depicker, A. (1990) Cloning and sequence analysis of truncated T-DNA inserts fromNicotiana tabacum.Gene 94, 155–63.Google Scholar
  17. Gould, A.R. (1986) Factors controlling generation of variabilityin vitro. Vasil, I.K. ed.,Cell Culture and Somatic Cell Genetics of Plants, Vol. 3, pp. 549–67. Orlando: Academic Press.Google Scholar
  18. Hamilton, R.H. and Fall, M.Z. (1971) The loss of tumor-initiating ability inAgrobacterium tumefaciens by incubation at high temperature.Experientia 27, 229–30.Google Scholar
  19. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation ofvir- and T-region of theAgrobacterium tumefaciens Ti plasmid.Nature 303, 179–80.Google Scholar
  20. Hooykaas, P.J.J. and Schilperoort, R.A. (1992)Agrobacterium and plant genetic engineering.Pl. Mol. Biol. 13, 327–36.Google Scholar
  21. Janssen, B.J. and Gardner, R.C. (1989) Localized transient expression of GUS in leaf discs following co-cultivation withAgrobacterium.Pl. Mol. Biol. 14, 61–72.Google Scholar
  22. Klapwijk, P.M., Scheulderman, T. and Schilperoort, R.A. (1978) Coordinated regulation of octopine degradation and conjugative transfer of Ti plasmids inAgrobacterium tumefaciens: evidence for a common regulatory gene and separate operons.J. Bacteriol. 136, 775–85.Google Scholar
  23. Koekman, B.K., Ooms, G., Klapwijk, P.M. and Schilperoort, R.A. (1978) Genetic map of an octopine Ti-plasmid.Plasmid 2, 347–57.Google Scholar
  24. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kálmán, Z., Korber, H., Rédei, G.P. and Schell, J. (1989) High-frequency T-DNA-mediated gene tagging in plants.Proc. Natl Acad. Sci. USA 86, 8467–71.Google Scholar
  25. Koncz, C., Mayerhofer, R., Koncz-Kálmán, Z., Nawrath, C., Reiss, B., Rédei, G. and Schell, J. (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging inArabidopsis thaliana.EMBO J. 9, 1337–46.Google Scholar
  26. Koncz, C., Németh, K., Rédei, G.P. and Schell, J. (1992) T-DNA insertional mutagenesis.P. Mol. Biol. 20, 963–76.Google Scholar
  27. Larkin, P.J., and Scowcroft, W.R. (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement.Theor. Appl. Genet. 60, 197–214.Google Scholar
  28. Lukácsovich, T. and Venetiáner, P. (1991) Increased mutation rate in bacteria overexpressing a cloned foreign gene.Mutation Res. 264, 25–8.Google Scholar
  29. Maliga, P., Sz-Breznovits, A. and Márton, L. (1973) Streptomycin resistant plants from callus culture of haploid tobacco.Nature new Biol. 244, 29–30.Google Scholar
  30. Márton, L. (1984) Transformation of tobacco protoplasts by co-culture withAgrobacterium. In Vasil, I.K. ed.,Cell Culture and Somatic Cell Genetics of Plants. Vol. 1.Laboratory Procedures and their Applications, pp. 514–521. Orlando: Academic Press.Google Scholar
  31. Márton, L., Biasini, G. and Maliga, P. (1985) Co-segregation of nitrate reductase activity and normal regeneration ability in selfed sibs ofNicotiana plumbaginifolia somatic hybrids, heterozygotes for nitrate reductase deficiency.Theor. Appl. Genet. 70, 340–4.Google Scholar
  32. Márton, L., Sidorov, V., Biasini, G. and Maliga, P. (1982a) Complementation in somatic hybrids indicates four types of nitrate reductase deficient lines inNicotiana plumbaginifolia.Mol. Gen. Genet. 187, 1–3.Google Scholar
  33. Márton, L., Dung, T.M., Mendel, R.R., and Maliga, P. (1982b) Nitrate reductase-deficient cell lines from haploid protoplast cultures ofNicotiana plumbaginifolia.Mol. Gen. Genet. 186, 301–4.Google Scholar
  34. Márton, L., Wullems, G.J., Molendijk, L. and Schilperoort, R.A. (1979)In vitro transformation of cultured cells fromNicotiana tabacum byAgrobacterium tumefaciens.Nature 277, 129–31.Google Scholar
  35. Mendel, R.R. and Müller, A.J. (1976) A common genetic determinant of xanthine dehydrogenase and nitrate reductase inNicotiana tabacum.Biochem. Physiol. Pflanzen 170, 538–41.Google Scholar
  36. Meyerhofer, R., Koncz-Kálmán, Zs., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Rédei, G.P., Schell, J., Hohn, B., and Koncz, C. (1991) T-DNA integration: a mode of illegitimate recombination in plants.EMBO J. 10, 697–704.Google Scholar
  37. Montoya, A.L., Chilton, M.D., Gordon, M.P., Sciaky, D. and Nester, E.W. (1977) Octopine and nopaline metabolism inAgrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes.J. Bacteriol. 129, 101–7.Google Scholar
  38. Müller, A.J. and Grafe, R. (1978) Isolation and characterization of cell lines ofNicotiana tabacum lacking nitrate reductase.Mol. Gen. Genet. 611, 67–76.Google Scholar
  39. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture.Physiol. Plant. 51, 473–97.Google Scholar
  40. Negrutiu, I., Dirks, R. and Jacobs, M. (1983) Regeneration of fully nitrate reductase-deficient mutants from protoplast culture ofNicotiana plumbaginifolia.Theor. Appl. Genet. 66, 341–7.Google Scholar
  41. Otten, L.A.B.M. and Schilperoort, R.A. (1978) A rapid microscale method for the detection of lysopine and nopaline hydrogenase,Biochim. Biophys. Acta 527, 497–500.Google Scholar
  42. Prieto, R. and Fernández, E. (1993) Toxicity of and mutagenesis by chlorate are independent of nitrate reductase activity inChlamydomonas reinhardtii.Mol. Gen. Genet. 237, 429–38.Google Scholar
  43. Purnhauser, L., Medgyesi, P., Czakó, M., Dix, P.J. and Márton, L. (1987) Stimulation of shoot regeneration inTriticum aestivum L. andNicotiana plumbaginifolia Viv. tissue cultures using an ethylene inhibitor AgNO3.Pl. Cell Rep. 6, 1–4.Google Scholar
  44. Rao, R.N. and Rogers, S.G. (1979) Plasmid pKC7: a vector containing ten restriction endonuclease sites suitable for cloning DNA segments.Gene 7, 79–82.Google Scholar
  45. Rogers, S.O. and Bendich, A.J. (1988) Extraction of DNA from plant tissues. In: Gelvin, S.B. and Schilperoort, R.A. eds,Plant Molecular Biology Manual, pp. A6/1–10. Dordrecht: Kluwer Academic Publishers.Google Scholar
  46. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular Cloning. A Laboratory Manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  47. Sidorov, V. and Maliga, P. (1982) Fusion complementation of auxotrophic and chlorophyll-deficient lines isolated in haploidNicotiana plumbaginifolia protoplast cultures.Mol. Gen. Genet. 186, 328–32.Google Scholar
  48. Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98, 503–17.Google Scholar
  49. Van Lijsebettens, M., Vanderhaeghen, R. and Van Montagu, M. (1991) Insertion mutagenesis inArabidopsis thaliana: isolation of a T-DNA linked mutation that alters leaf morphology.Theor. Appl. Genet. 81, 277–84.Google Scholar
  50. Virts, E.L. and Gelvin, S.B. (1985) Analysis of transfer of tumor-inducing plasmid fromAgrobacterium tumefaciens toPetunia protoplasts.J. Bacteriol. 162, 1030–8.Google Scholar
  51. Wallroth, M., Gerats, A.G.M., Rogers, S.G., Fraley, R.T. and Horsch, R.B. (1986) Chromosomal localization of foreign genes inPetunia hybrida.Mol. Gen. Genet. 202, 6–15.Google Scholar
  52. Walker, G.C. (1985) Inducible repair systems.Ann. Rev. Biochem. 54, 425–57.Google Scholar
  53. Zambryski, P. (1992) Chronicles from theAgrobacterium-plant cell DNA transfer story.Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 43, 465–90.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • László Márton
    • 1
  • Milan Hrouda
    • 2
  • Attila Pécsváradi
    • 3
  • Mihály Czako
    • 1
  1. 1.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA
  2. 2.Institute for Crop ProductionPraha 6, RuzyneCzech Republic
  3. 3.Department of Plant PhysiologyAttila József UniversitySzegedHungary

Personalised recommendations