Skip to main content
Log in

Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The contribution of specific ions to the conductance and potential of the basolateral membrane of the rabbit urinary bladder has been studied with both conventional and ion-specific microelectrode techniques. In addition, the possibility of an electrogenic active transport process located at the basolateral membrane was studied using the polyene antibiotic nystatin. The effect of ion-specific microelectrode impalement damage on intracellular ion activities was examined and a criterion set for acceptance or rejection of intracellular activity measurements. Using this criterion, we found (K+)=72mm and (Cl)=15.8mm. Cl but not K+ was in electrochemical equilibrium across the basolateral membrane. The selective permeability of the basolateral membrane was measured using microelectrodes, and the data analyzed using the Goldman, Hodgkin-Katz equation. The sodium to potassium permeability ratio (P Na/P K) was 0.044, and the chloride to potassium permeability ratio (P Cl/P K) was 1.17. Since K+ was not in electrochemical equilibrium, intracellular (K+) is maintained by active metabolic processes, and the basolateral membrane potential is a diffusion potential with K+ and Cl the most permeable ions. After depolarizing the basolateral membrane with high serosal potassium bathing solutions and eliminating the apical membrane as a rate limiting step for ion movement using the polyene antibiotic nystatin, we found that the addition of equal aliquots of NaCl to both solutions caused the basolateral membrane potential to hyperpolarize by up to 20 mV (cell interior negative). This popential was reduced by 80% within 3 min of the addition of ouabain to the serosal solution. This hyperpolarization most probably represents a ouabain sensitive active transport process sensitive to intracellular Na+. An equivalent electrical circuit for Na+ transport across rabbit urinary bladder is derived, tested, and compared to previous results. This circuit is also used to predict the effects that microelectrode impalement damage will have on individual membrane potentials as well as time-dependent phenomena; e.g., effect of amiloride on apical and basolateral membrane potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Canessa, M., Labarca, P., Leaf, A. 1976. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.J. Membrane Biol. 30:65

    Article  Google Scholar 

  • Chen, J.S., Walser, M. 1975. Sodium fluxes through the active transport pathway in toad bladder.J. Membrane Biol. 21:87

    Google Scholar 

  • Eaton, D.C., Russell, J.M., Brown, A.M. 1975. Ionic permeabilities of anAplysia giant neuron.J. Membrane Biol. 21:353

    Google Scholar 

  • Finn, A.L. 1976. Changing concepts of transepithelial sodium transport.Physiol. Rev. 56:453

    PubMed  Google Scholar 

  • Finn, A.L., Reuss, L. 1975. Effects of changes in the composition of the toad urinary bladder epithelium.J. Physiol. (London) 250:541

    Google Scholar 

  • Fuch, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571

    PubMed  Google Scholar 

  • Khuri, R.N., Agulian, S.K., Kalloghlian, A. 1972a. Intracellular potassium in cells of the distal tubule.Pfluegers Arch. 338:73

    Article  Google Scholar 

  • Khuri, R., Hajjar, J.J., Agulian, S., Bogharian, K., Kalloghlian, A., Bizri, H. 1972b. Intracellular potassium in cells of the proximal tubule ofNecturus maculosus.Pfluegers Arch. 338:73

    Article  Google Scholar 

  • Kimura, G., Urakabe, S., Yuasa, S., Miki, S., Takamitsu, Y., Orita, Y., Abe, H. 1977. Potassium activity and plasma membrane potentials in epithelial cells of toad bladder.Am. J. Physiol 232:F196

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 43:298

    Google Scholar 

  • Lee, C.O., Armstrong, W.McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261

    PubMed  Google Scholar 

  • Lewis, S.A. 1977a. A reinvestigation of the function of the mammalian urinary bladder.Am. J. Physiol. 232:F187

    PubMed  Google Scholar 

  • Lewis, S.A. 1977b. Model of sodium transport in tight epithelia. Joshia Macy, Jr., Foundation Symposia on Renal Function (in press).

  • Lewis, S.A., Diamond, J.A. 1975. Active sodium transport by mammalian urinary bladder.Nature (London) 253:747

    Google Scholar 

  • Lewis, S.A., Diamond, J.M. 1976. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1

    Article  Google Scholar 

  • Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427

    PubMed  Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41

    Article  Google Scholar 

  • Lindemann, B. 1975. Impalement artifacts in microelectrode recordings of epithelial membrane potentials.Biophys. J. 15:1164

    Google Scholar 

  • Lindenmayer, G.E., Schwartz, A., Thompson, H.K., Jr. 1974. A kinetic description for sodium and potassium effects on (Na+−K+-adenosine triphosphatase. A model for a two-nonequivalent site potassium activation and an analysis of multiquivalent site models for sodium activation.J. Physiol. (London) 236:1

    Google Scholar 

  • MacRobbie, E.A.C., Ussing, H.H. 1961. Osmotic behavior of the epithelial cells of frog skin.Acta Physiol. Scand. 36:17

    Google Scholar 

  • Okada, Y., Ogawa, M., Aoki, N., Izutsu, K. 1973. The effect of K+ on the membrane potential in Hela cells.Biochim. Biophys. Acta 291:116

    PubMed  Google Scholar 

  • Okada, Y., Toshinori, S., Inouye, A. 1975. Effects of potassium ions and sodium ions on membrane potential of epithelial cells in rat duodenum.Biochim. Biophys. Acta 413:104

    PubMed  Google Scholar 

  • Reuss, L., Finn, A.L. 1975. Electrical properties of the cellular transepithelial pathway inNecturus gall bladder: II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141

    Article  Google Scholar 

  • Reuss, L., Finn, A.L. 1976. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder.Biophys. J. 15:71

    Google Scholar 

  • Rose, R.C., Narwold, D.L. and Koch, M.J. 1977. Electrical potential profile in rabbit ileum: Role of rheogenic Na+ transport.Am. J. Physiol. 232:E5

    PubMed  Google Scholar 

  • Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum.J. Gen. Physiol. 57:639

    PubMed  Google Scholar 

  • Russell, J.M., Eaton, D.C., Brodwick, M.S. 1977. Effects of nystatin on membrane conductance and internal ion activities inAplysia neurons.J. Membrane Biol. 37:137

    Article  Google Scholar 

  • Saito, T., Lief, P.D., Essig, A. 1974. Conductance of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265

    PubMed  Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. Active sodium transport and the electrophysiology of rabbit colon.J. Membrane Biol. 33:351

    Article  Google Scholar 

  • Sudou, K., Hoshi, T. 1977. Mode of action of amiloride in toad urinary bladder.J. Membrane Biol. 32:115

    Article  Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1977. Effect of anions on amiloride-sensitive, active sodium transport across rabbit colon,in vitro.J. Membrane Biol. 37:63

    Article  Google Scholar 

  • Ussing, H.H., Erlij, D., Lassen, U. 1974. Transport pathways in biological membranes.Annu. Rev. Physiol. 36:17

    Article  Google Scholar 

  • Walker, J.L. 1971. Ion specific liquid ion exchanger microelectrodes.Anal. Chem. 43:89a

    Article  Google Scholar 

  • White, J.F. 1976. Intracellular potassium activities inAmphiuma small intestine.Am. J. Physiol. 321:1214

    Google Scholar 

  • Yonath, J., Civan, M.M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, S.A., Wills, N.K. & Eaton, D.C. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps. J. Membrain Biol. 41, 117–148 (1978). https://doi.org/10.1007/BF01972629

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01972629

Keywords

Navigation