Advertisement

Rheologica Acta

, Volume 2, Issue 1, pp 82–87 | Cite as

Evaluation of high shear viscosity data from jet and concentric cylinder viscometers

  • Roger S. Porter
  • Julian F. Johnson
Originalarbeiten

Summary

This work compares and evaluates viscosity data obtained on similar fluids by two widely accepted high shear techniques. Both the jet and concentric cylinder viscometers are useful high shear methods. The major limitation of the jet viscometer is an inability to distinguish quantitatively between energy losses in laminar flow and those due to capillary geometry and experimental conditions. For example, the jet viscometer gives minima in viscosity-shear rate correlations which are difficult to treat. These minima are not found in concentric cylinder viscometer data for the same and similar fluids. The apparent viscosity increase at high shear in the jet may be due to factors other thanReynold's turbulence, as previously supposed. This effect may be due to molecular relaxation phenomena in certain cases. The jet viscometer might thus be used to evaluate molecular relaxation and/or other phenomena contributing to this effect.

For a variety of systems, the concentric cylinder viscometer gives significantly smaller temporary viscosity losses due to shear than do the jet viscometer data. These comparisons are made using the maximum jet shear rate at the capillary wall. The differences are, of course, larger if average shear rates are used to compare the data. It is concluded that the jet viscometer results tend to be erroneous. This is possibly due to capillary end effects or problems with kinetic energy corrections.

Keywords

Shear Rate High Shear Viscosity Data Molecular Relaxation Average Shear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Morris, W. J. andR. Schnurmann, Rev. Sci. Instruments17, 17 (1946).CrossRefGoogle Scholar
  2. 2).
    Morris, W. J., Jet Viscometers for High Rates of Shear, M. Sc. Thesis (Manchester 1948).Google Scholar
  3. 3).
    Schnurmann, R. andW. J. Morris, Principles of Rheological Measurement, p. 202 (London 1946).Google Scholar
  4. 4).
    Morris, W. J. andR. Schnurmann, Nature160, 674 (1947).Google Scholar
  5. 5).
    Schnurmann, R., Proc. International Rheology Congr., II, 142 (Amsterdam 1948).Google Scholar
  6. 6).
    Schnurmann, R., Trans. Instruments and Measurements Conf., 154 (Stockholm 1949).Google Scholar
  7. 7).
    Morris, W. J. andR. Schnurmann, Nature167, 317 (1951).Google Scholar
  8. 8).
    Schnurmann, R., Appl. Mech. Rev.4, 679 (1954).Google Scholar
  9. 9).
    Mardles, E. S. J., Nature182, 438 (1958).Google Scholar
  10. 10).
    Barber, E. M., J. R. Muenger andF. J. Villforth, Jr., Anal. Chem.27, 425 (1955).CrossRefGoogle Scholar
  11. 11).
    Porter, R. S. andJ. F. Johnson, J. Phys. Chem.63, 202 (1959).CrossRefGoogle Scholar
  12. 12).
    Porter, R. S. andJ. F. Johnson, J. Appl. Polymer Sci.3, 107 (1960).CrossRefGoogle Scholar
  13. 13).
    Porter, R. S. andJ. F. Johnson, J. Appl. Polymer Sci.3, 200 (1960).CrossRefGoogle Scholar
  14. 14).
    Porter, R. S. andJ. F. Johnson, J. Polymer Sci.50, 379 (1961).CrossRefGoogle Scholar
  15. 15).
    Porter, R. S. andJ. F. Johnson Wear4, 32 (1961).CrossRefGoogle Scholar
  16. 16).
    Gaskins, F. H., andW. Philippoff, Trans. Soc. Rheology3, 181 (1959).CrossRefGoogle Scholar
  17. 17).
    Philippoff, W. andF. H. Gaskins, Trans. Soc. Rheology2, 263 (1958).CrossRefGoogle Scholar
  18. 18).
    Symposium on Measuring Viscosity at High Rates of Shear, ASTM Special Technical Bulletin No. III (1951).Google Scholar
  19. 19).
    Sisko, A. W., J. Colloid Sci.15, 89 (1960).CrossRefGoogle Scholar
  20. 20).
    Georgi, C. W., Proc. 4th World Petroleum Cong., Section VI, 211 (1955).Google Scholar
  21. 21).
    Philippoff, W., ASLE Trans.1, 82 (1958).Google Scholar
  22. 22).
    Klaus, E. E. andM. R. Fenshe, Lub. Eng.11, 101 (1955).Google Scholar
  23. 23).
    Horowitz, H. H., Ind. Eng. Chem.50, 1089 (1958).CrossRefGoogle Scholar
  24. 24).
    Tordella, J. P., Rheol. Acta1, 216 (1958).Google Scholar
  25. 25).
    Sandiford, D. J. H., A. H. Willbourn, A. Renfrew andP. Morgan, Polythene Ed., 2nd Ed., p. 212 (New York-London, 1960).Google Scholar
  26. 26).
    Metzner, A, H. andJ. C. Reed, Amer. Ind. Chem. Eng. J.1, 434 (1955).Google Scholar
  27. 27).
    Horowitz, H. H., F. E. Steidler andE. O. Forster, Proc. 5th World Petroleum Cong., Section VI, Preprint 19 (New York 1959).Google Scholar
  28. 28).
    Bagley, E. B. andA. B. Metzner, Ind. Eng. Chem.51, 714 (1959).CrossRefGoogle Scholar
  29. 29).
    Scott Blair, G. W., The Principles of Rheological Measurement, p. 83 (London 1946).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff-Verlag 1962

Authors and Affiliations

  • Roger S. Porter
    • 1
  • Julian F. Johnson
    • 1
  1. 1.California Research CorporationRichmond

Personalised recommendations