, Volume 47, Issue 4, pp 340–349 | Cite as

Assimilation of mineral nitrogen and ion balance in the two partners of ectomycorrhizal symbiosis: Data and hypothesis

  • C. Plassard
  • P. Scheromm
  • D. Mousain
  • L. Salsac
Multi-Author Review Structure, Function and Ecology of the Mycorrhizal Symbiosis


Assimilation pathways of mineral nitrogen and ion balances of the two partners of ectomycorrhizal symbiosis (fungi and woody plants) are reviewed. Data are presented about the partners both in pure culture and in mycorrhizal association. The two forms of mineral nitrogen, ammonium and nitrate, differ in their mobility in the soil, their transport into the cells, their uptake rates by plants and their assimilation pathways. These metabolic differences are related to differences in adjustment of ion balances and carbon metabolism under conditions of nitrate or ammonium nutrition. The data obtained on the partners of ectomycorrhizal symbiosis are discussed from this point of view and the observations composed with those on herbaceous angiosperms.

Key words

Nitrate ammonium nitrate reductase ion balance organic acids carbon metabolism ectomycorrhizal association woody plants ectomycorrhizal fungi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, M. A., and Attiwill, P. M., Nitrate reductase activity and growth response of forest species to ammonium and nitrate sources of nitrogen. Plant Soil66 (1982) 373–381.Google Scholar
  2. 2.
    Aryan, A. P., and Wallace, W., Involvement of alcohol deshydrogenase in the enhancement of the in vivo nitrate reductase activity of root tissues by propanol. Plant Sci. Lett.30 (1983) 25–32.Google Scholar
  3. 3.
    Beevers, L., and Hageman, R. H., Nitrate and nitrite reduction, in: The Biochemistry of Plants, vol. 5, pp. 115–168. Eds P. K. Stumpf and E. E. Conn. Academic Press, New York 1980.Google Scholar
  4. 4.
    Bigg, W. L., and Daniel, T. W., Effects of nitrate, ammonium and pH on the growth of conifer seedlings and their production of nitrate reductase. Plant Soil50 (1978) 371–385.Google Scholar
  5. 5.
    Blacquière, T., Hofstra, R., and Stulen, I., Ammonium and nitrate nutrition onPlantago lanceolata andPlantago major L. ssp.major. I. Aspects of growth, chemical composition and root respiration. Plant Soil104 (1987) 129–141.Google Scholar
  6. 6.
    Bledsoe, C. S., and Rygiewicz, P. T., Ectomycorrhizas affect ionic balance during ammonium uptake by Douglas fir roots. New Phytol.102 (1986) 271–283.Google Scholar
  7. 7.
    Bledsoe, C. J., and Zasoski, R. J., Effects of ammonium and nitrate on growth and nitrogen uptake by mycorrhizal Douglas fir seedlings. Plant Soil71 (1983) 445–454.Google Scholar
  8. 8.
    Bloom, A. J., and Chapin, F. S., Differences in steady-state net ammonium and nitrate influx by cold and warm adapted barley varieties. Plant Physiol.68 (1981) 1064–1067.Google Scholar
  9. 9.
    Bollard, E. G., Transport in the xylem. A. Rev. Plant Physiol.11 (1960) 141–166.Google Scholar
  10. 10.
    Boudet, A. M., Les acides quiniques et shikimiques et leur métabolisme chez les végétaux supérieurs. Thèse Doctorat d'Etat, Université Paul Sabatier, Toulouse 1972.Google Scholar
  11. 11.
    Bowen, G. D., and Smith, S. E., The effects of mycorrhizas on nitrogen uptake by plants, in: Terrestrial Nitrogen Cycles, vol. 33, pp. 237–247. Eds F. E. Clark and T. Rosswall. Ecological Bulletins, Stockholm 1981.Google Scholar
  12. 12.
    Carrodus, B. B., Absorption of nitrogen by mycorrhizal roots of beech. I. Factors affecting the assimilation of nitrogen. New Phytol.65 (1966) 358–371.Google Scholar
  13. 13.
    Carrodus, B. B., Absorption of nitrogen by mycorrhizal roots of beech. II. Ammonium and nitrate as sources of nitrogen. New Phytol.66 (1967) 1–4.Google Scholar
  14. 14.
    Casselton, P. J., Anaplerotic pathways, in: The Filamentous Fungi, Biosynthesis and Metabolism, vol. 2, pp. 121–136. Eds J. E. Smith and D. R. Berry. Edward Arnold, London 1976.Google Scholar
  15. 15.
    Chang, C. C., and Beevers, J., Biogenesis of oxalate in plant tissues. Plant Physiol.43 (1968) 1821–1828.Google Scholar
  16. 16.
    Clarkson, D. T., Regulation of the absorption and release of nitrate by plant cells: a review of current ideas and methodology, in: Fundamental, Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants, pp. 1–27. Eds H. Lambers, J. J. Neeteson and I. Stulen. Martinus Nijhoff Publishers, Den Haag 1986.Google Scholar
  17. 17.
    Clément, A., Equilibre ionique de tissu foliaire de l'Epicea —Picea abies) Horst — et du Pin noir d'Autriche —Pinus nigra Arnold ssp.nigricans. Thèse d'état, Institut National Polytechnique de Lorraine, 1989.Google Scholar
  18. 18.
    Clément, A., Etude de la nutrition minérale dePicea excelsa Link sur sol calcaire et sur sol décarbonaté, incidence de la nutrition sur le métabolisme des anions minéraux et organiques. Ann. Sci. Forest.31 (1974) 189–205.Google Scholar
  19. 19.
    Clément, A., Garbaye, J., and Le Tacon, F., Importance des ectomycorhizes dans la résistance au calcaire du Pin noir (Pinus nigra Arn spp.nigricans Host). Oecol. Plant.12 (1977) 111–131.Google Scholar
  20. 20.
    Dell, B., Botton, B., Martin, F., and Le Tacon, F., Glutamate dehydrogenases in ectomycorrhizas of spruce (Picea excelsa L.) and beech (Fagus sylvatica L.). New Phytol.111 (1989) 683–692.Google Scholar
  21. 21.
    Dry, I., Wallace, W., and Nicholas, D. J. D., Role of ATP in nitrite reduction in roots of wheat and pea. Planta152 (1981) 234–238.Google Scholar
  22. 22.
    Findenegg, G. R., A comparative study of ammonium toxicity at different constant pH of the nutrient solution. Plant Soil103 (1987) 239–243.Google Scholar
  23. 23.
    Finlay, R. D., Odham, G., and Söderström, B., Mycelial uptake and assimilation of nitrogen from15N-labelled ammonium byPinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol.110 (1987) 59–66.Google Scholar
  24. 24.
    Finlay, R. D., Odham, G., and Söderström, B., Uptake, translocation and assimilation of nitrogen from15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems ofFagus sylvatica infected withPaxillus involutus. New Phytol.113 (1989) 47–55.Google Scholar
  25. 25.
    Flewelling, J. W., Ammonium uptake from dilute solutions byPinus radiata seedlings. N. Z. J. For. Sci.9 (1979) 10–14.Google Scholar
  26. 26.
    France, R. C., and Reid, C. P. P., Absorption of ammonium and nitrate by mycorrhizal and non mycorrhizal roots of pine, in: Root Physiology and Symbiosis, vol. 6, pp. 336–345. Eds A. Riedacker and J. Gagnaire-Michard. Nancy 1979.Google Scholar
  27. 27.
    France, R. C., and Reid, C. P. P., Interactions of nitrogen and carbon in the physiology of ectomycorrhizae. Can. J. Bot.61 (1983) 964–984.Google Scholar
  28. 28.
    Garrett, R. H., and Amy, N. K., Nitrate assimilation in fungi. Adv. Microb. Physiol.18 (1978) 1–65.Google Scholar
  29. 29.
    Genetet, I., Etude de l'absorption et de l'assimilation de l'azote inorganique chez un champignon ectomycorhizien (Cenococcum graniforme) et chez les ectomycorhizes de Hêtre (Fagus sylvatica). D.E.A. Biologie et Physiologie Végétales, Université Nancy, 1983.Google Scholar
  30. 30.
    Genetet, I., Martin, F., and Stewart, G. R., Nitrogen assimilation in mycorrhizas. Ammonium assimilation in the N-starved ectomycorrhizal fungusCenococcum graniforme. Plant Physiol.76 (1984) 395–399.Google Scholar
  31. 31.
    Ghorbal, M. H., Absorption du calcium, localisation et role dans la perméabilité membranaire. Relation avec le caractère calcicole ou calcifuge. Thèse d'Etat, Université des Sciences et Techniques du Languedoc, Montpellier 1979.Google Scholar
  32. 32.
    Gojon, A., Etude de la contribution des racines à la réduction du nitrate. Thèse Doctorat, Université des Sciences et Techniques du Languedoc, Montpellier 1987.Google Scholar
  33. 33.
    Gojon, A., Soussana, J. F., Passama, L., and Robin, P., Validité d'une mesure in situ pour l'estimation de la réduction du nitrate par des plantules entières du maïs (Zea mays L.). C. r. Acad. Sci.297 (1983) 617–620.Google Scholar
  34. 34.
    Haynes, R. J., and Goh, K. M., Ammonium and nitrate nutrition of plants. Biol. Rev.53 (1978) 465–510.Google Scholar
  35. 35.
    Ho, I., and Trappe, J. M., Nitrate reducing capacity of two vesicular-arbuscular mycorrhizal fungi. Mycologia67 (1975) 886–888.Google Scholar
  36. 36.
    Ho, I., and Trappe, J. M., Nitrate reductase activity of non mycorrhizal Douglas fir rootlets and of some associated mycorrhizal fungi. Plant Soil54 (1980) 395–398.Google Scholar
  37. 37.
    Jaworsky, E. G., Nitrate reductase assay in intact plant tissues, Biochem. biophys. Res. Commun.43 (1971) 1274–1279.Google Scholar
  38. 38.
    Kirkby, E. A., and Mengel, K., Ionic balance in different tissues of the tomato plant in relation to nitrate, urea or ammonium nutrition. Plant Physiol.42 (1967) 6–14.Google Scholar
  39. 39.
    Kleiner, D., The transport of NH3 and NH4 accross biological membranes. Biochim. biophys. Acta639 (1981) 41–52.Google Scholar
  40. 40.
    Knight, A. H., Crooke, W. M., and Inskson, R. H., Cation exchange capacity of tissues of higher and lower plants and their related uronic acid content. Nature192 (1961) 142–143.Google Scholar
  41. 41.
    Krajina, V. J., Madoc-Jones, S., and Mellor, G., Ammonium and nitrate in the nitrogen economy of some conifers growing in Douglas fir communities of the Pacific North-West of America. Soil Biol. Biochem.5 (1973) 143–147.Google Scholar
  42. 42.
    Krupa, S., and Bränström, G., Studies on the nitrogen metabolism in ectomycorrhizae. II. Free and bound amino acids in the mycorrhizal fungusBoletus variegatus, in the root systems ofPinus sylvestris and during their association. Physiol. Plant.31 (1974) 279–283.Google Scholar
  43. 43.
    Lafferty, M. A., and Garrett, R. H., Purification and properties of theNeurospora crassa assimilatory nitrate reductase. J. biol. Chem.249 (1974) 7555–7567.Google Scholar
  44. 44.
    Lapeyrie, F., Oxalate synthesis from soil bicarbonate by the mycorrhizal fungusPaxillus involutus. Plant Soil3 (1988) 3–8.Google Scholar
  45. 45.
    Lapeyrie, F., Chilvers, G. A., and Behm, C. A., Oxalic acid synthesis by th mycorrhizal fungusPaxillus involutus (Batsch ex Fr.). New Phytol.106 (1987) 139–146.Google Scholar
  46. 46.
    Littke, W. R., Nitrogen uptake by mycorrhizal fungi and mycorrhizal Douglas fir. Philos. Doct. Diss., Univ. of Washington 1982.Google Scholar
  47. 47.
    Littke, W., Bledsoe, C. S., and Edmonds, R. L., Nitrogen uptake and growth in vitro byHebeloma crustulinforme and other Pacif Northwest mycorrhizal fungi. Can. J. Bot.62 (1984) 647–652.Google Scholar
  48. 48.
    Margolis, H. A., and Vézina, L. P., Nitrate content, amino acid composition and growth of yellow birch seedlings in response to light and nitrogen source. Tree Physiol.4 (1988) 245–253.Google Scholar
  49. 49.
    Margolis, H. A., Vézina, L. P., and Quimet, R., Relation of light and nitrogen source to growth, nitrate reductase and glutamine synthetase activity of jack pine seedlings. Physiol. Plant.72 (1988) 790–795.Google Scholar
  50. 50.
    Martin, F., Absorption, assimilation et transport de l'azote inorganique chez le Pin noir d'Autriche (Pinus nigra Arn.nigricans Horst) et l'Aulne glutineux (Alnus glutinosa (L.) Gaertn.). Thèse Doct. 3ème cycle, Univ. Nancy, 1982.Google Scholar
  51. 51.
    Martin, F.,15N-NMR studies of nitrogen assimilation and amino acid biosynthesis in the ectomycorrhizal fungusCenococcum graniforme. FEBS Letters182 (1985) 350–354.Google Scholar
  52. 52.
    Martin, F., Chemardin, M., and Gadal, P., Nitrate assimilation and nitrogen circulation in Austrian pine. Physiol. Plant.53 (1981) 105–110.Google Scholar
  53. 53.
    Martin, F., Msatef, Y., and Botton, B., Nitrogen assimilation in mycorrhizas. I. Purification and properties of the nicotinamide adenine dinucleotide phosphate — specific glutamate dehydrogenase of the ectomycorrhizal fungusCenococcum graniforme. New Phytol.93 (1983) 415–422.Google Scholar
  54. 54.
    Martin, F., and Canet, D., Biosynthesis of amino acids during (13C) glucose utilization by the ectomycorrhizal assomyceteCenococcum geophilum monitored by13C nuclear magnetic resonance. Physiol. vég.24 (1986) 209–218.Google Scholar
  55. 55.
    Martin, F., Stewart, G. R., Genetet, I., and Le Tacon, F., Assimilation of 15 NH 4/+ by beech (Fagus sylvatica L.) ectomycorrhizas. New Phytol.102 (1986) 85–94.Google Scholar
  56. 56.
    Martin, F., Ramdstedt, M., and Söderhäll, K., Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas. Biochimie69 (1987) 569–581.Google Scholar
  57. 57.
    Martin, F., Ramstedt, M., Söderhäll, K., and Canet, D., Carbohydrate and amino acid metabolism in the ectomycorrhizal ascomyceteSphaerosporella brunnea during glucose utilization. A13C NMR study. Plant Physiol.86 (1988) 935–940.Google Scholar
  58. 58.
    Maurino, S. G., Echevarria, C., Mejias, J. A., Vargas, M. A., and Maldonado, J. M., Properties of the in vivo nitrate reductase assay in maize, soybean and spinach leaves. J. Plant Physiol.124 (1986) 123–130.Google Scholar
  59. 59.
    Marzluf, G. A., Regulation of nitrogen metabolism and gene expression in fungi. Microbiol. Rev.45 (1981) 437–461.Google Scholar
  60. 60.
    Mention, M., and Plassard, C., Comparaison de la nutrition nitrique et ammoniacale de quatre espèces de basidiomycètes ectomycorhiziens. C. r. Acad. Sci.297 (1983) 489–492.Google Scholar
  61. 61.
    Miflin, B. J., and Lea, P. J., Ammonia assimilation, in: Biochemistry of Plants, vol. 5, pp. 169–199. Ed. B. S. Miflin. Academic Press, London 1980.Google Scholar
  62. 62.
    Morgan, M. A., and Jackson, W. A., Reciprocal ammonium transport into and out of plant roots: modifications by plant nitrogen status and elevated root ammonium concentration. J. exp. Bot.40 (1989) 207–214.Google Scholar
  63. 63.
    Mousain, D., Etude de la nutrition phosphatée des symbiotes ectomycorhiziens. Thèse Doctorat d'Etat, Université des Sciences et Techniques du Languedoc, Montpellier 1989.Google Scholar
  64. 64.
    Naik, M. S., and Nicholas, D. J. D., Origine of NADH for nitrate reduction in wheat roots. Plant Sci. Lett.35 (1984) 91–96.Google Scholar
  65. 65.
    Nason, A., and Evans, H. J., Triphosphopyridine nucleotide-nitrate reductase inNeurospora. J. biol. Chem.202 (1953) 655–673.Google Scholar
  66. 66.
    Oaks, A., and Hirel, B., Nitrogen metabolism in roots. A. Rev. Plant Physiol.36 (1985) 345–365.Google Scholar
  67. 67.
    Pate, J. S., Transport and partitioning of nitrogenous solutes. A. Rev. Plant Physiol.31 (1980) 313–340.Google Scholar
  68. 68.
    Plassard, C., Données sur la nutrition azotée de symbiotes ectomycorhiziens:Pinus pinaster, Hebeloma cylindrosporum etPisolithus tinctorius. Thèse Doctorat d'Etat, Université des Sciences et Techniques du Languedoc, Montpellier, 1989.Google Scholar
  69. 69.
    Plassard, C., Mousain, D., and Salsac, L., Mesure in vitro de l'activité nitrate réductase dans les thalles deHebeloma cylindrosporum, champignon basidiomycète. Physiol. vég.22 (1984) 67–74.Google Scholar
  70. 70.
    Plassard, C., Scheromm, P., and Llamas, H., Nitrate assimilation by maritime pine and ectomycorrhizal fungi in pure culture, in: Mycorrhizae: Physiology and Genetics, pp. 383–388. 1st ESM, Dijon, 1–5 July 1985. INRA, Paris 1986.Google Scholar
  71. 71.
    Raven, J. A., and Smith, F. A., Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol.76 (1976) 415–431.Google Scholar
  72. 72.
    Rielly, C. H., and Edwards, J. H., Isolation, distribution and characterization of peach seedling nitrate reductase. J. Plant Nutr.9 (1986) 1323–1334.Google Scholar
  73. 73.
    Runge, M., Physiology and ecology of nitrogen nutrition, in: Encyclopedia of Plant Physiology (N.S.), vol. 12C, pp. 163–200. Eds O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler. Springer-Verlag, Berlin 1983.Google Scholar
  74. 74.
    Rygiewicz, P. T., Bledsoe, C. S., and Zasoski, R. J., Effects of ectomycorrhizae and solution pH on (15N) ammonium uptake by coniferous seedlings. Can. J. For. Res.14 (1984) 885–892.Google Scholar
  75. 75.
    Rygiewicz, P. T., Bledsoe, C. S., and Zasoski, R. J., Effects of ectomycorrhizae and solution pH on (15N) nitrate uptake by coniferous seedlings. Can. J. For. Res.14 (1984) 893–899.Google Scholar
  76. 76.
    Saint John, B. J., Smith, S. E., Smith, F. A., and Nicholas, D. J., Ammonium assimilation inPezizella ericae, in: Proceedings of the 6th North American Conference on Mycorrhizae, p. 418. Ed. R. Molina. Forest Research Laboratory, Oregon, USA 1985.Google Scholar
  77. 77.
    Salsac, L., L'absorption du calcium par la racine des plantes calcicoles ou calcifuges. Science du sol — Bulletin de l'A.F.E.S.1 (1980) 45–77.Google Scholar
  78. 78.
    Salsac, L., Chaillou, S., Morot-Gaudry, J. F., Lesaint, C., and Jolivet, E., Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem.25 (1987) 805–812.Google Scholar
  79. 79.
    Sarjala, T., Raitio, H., and Turkki, E. M., Nitrate metabolism in Scots pine seedlings during their first growing season. Tree Physiol.3 (1987) 285–293.Google Scholar
  80. 80.
    Sarkar, S. K., and Malhotra, S. S., Gas-liquid chromatographic method for separation of organic acids and its application to pine needle extracts. J. Chromat.171 (1979) 227–232.Google Scholar
  81. 81.
    Scheromm, P., Nutrition nitrique et ammoniacale des deux partenaires d'une symbiose ectomycorhizienne:Pinus pinaster et le basidiomycèteHebeloma cylindrosporum. Effet de la mycorhization sur l'assimilation du nitrate. Thèse de Doctorat, Université des Sciences et Techniques du Languedoc, Montpellier 1989.Google Scholar
  82. 82.
    Scheromm, P., and Plassard, C., Nitrogen nutrition of non-mycorrhized maritime pine (Pinus pinaster) grown on nitrate or ammonium. Plant Physiol. Biochem.26 (1988) 261–269.Google Scholar
  83. 83.
    Scheromm, P., Plassard, C., and Salsac, L., Nitrate nutrition of maritime pine (Pinus pinaster Soland in Ait.) mycorrhized by the ectomycorrhizal fungusHebeloma cylindrosporum. New Phytol.114 (1990) 93–98.Google Scholar
  84. 84.
    Scheromm, P., Plassard, C., and Salsac, L., Effect of nitrate and ammonium nutrition on the metabolism of the ectomycorrhizal fungusHebeloma cylindrosporum. New Phytol.114 (1990) 227–234.Google Scholar
  85. 85.
    Scheromm, P., Plassard, C., and Salsac, L., Nitrate reductase regulation in the ectomycorrhizal fungusHebeloma cylindrosporum Romagn. cultured on nitrate or ammonium. New Phytol.114 (1990) 441–447.Google Scholar
  86. 86.
    Smirnoff, N., Todd, P., and Stewart, G. R., The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot.54 (1984) 363–374.Google Scholar
  87. 87.
    Smith, F. A., and Raven, J. A., Intracellular pH and its regulation. A. Rev. Plant Physiol.30 (1979) 289–311.Google Scholar
  88. 88.
    Smith, F. A., and Smith, S. E., Membrane transport at the biotrophic interface: an overview. Aust. J. Plant Physiol.16 (1989) 33–43.Google Scholar
  89. 89.
    Thibaud, J. B., and Grignon, C., Mechanism of nitrate uptake in corn roots. Plant Sci. Lett.22 (1981) 279–289.Google Scholar
  90. 90.
    Tolley-Henry, L., and Raper, C. D., Utilization of ammonium as a nitrogen source. Effects of ambient acidity on growth and nitrogen accumulation by soybean. Plant Physiol.82 (1986) 54–60.Google Scholar
  91. 91.
    Van Beusichem, M. L., Kirkby, E. A., and Baas, R., Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients inRicinus communis. Plant Physiol.86 (1988) 914–921.Google Scholar
  92. 92.
    Van den Driessche, R., Response of conifer seedlings to nitrate and ammonium sources of nitrogen. Plant Soil34 (1971) 421–439.Google Scholar
  93. 93.
    Vézina, L. P., Margolis, H. A., and Ouimet, R., The activity, characterization and distribution of the nitrogen assimilation enzyme, glutamine synthetase, in jack pine seedlings. Tree Physiol.4 (1988) 9–118.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • C. Plassard
    • 1
  • P. Scheromm
    • 2
  • D. Mousain
    • 1
  • L. Salsac
    • 1
  1. 1.Laboratoire de Recherches sur les Symbiotes des RacinesINRA-ENSAMontpellier Cedex 1(France)
  2. 2.Laboratoire de Technologie des CéréalesINRAMontpellier Cedex 1(France)

Personalised recommendations