Skip to main content
Log in

Periodic responses in squid axon membrane exposed intracellularly and extracellularly to solutions containing a single species of salt

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A periodic membrane potential change was found to occur in squid giant axons which were internally and externally perfused with solutions of an identical composition and were hyperpolarized by passing a sustained inward current. The solution contained Co2+ or Mn2+ as the sole cation species at a concentration of 1–10mm. The amplitude of the response was roughly 100 mV. The current intensity and the ion concentration had large effects on the response. The voltage-clamp technique revealed an N-shapedI-V characteristic of the membrane system. The membrane emf of the resting and excited states was almost the same but the membrane conductance was increased in the excited states. The response was suppressed with 4-aminopyridine reversibly but unchanged with tetrodotoxin or D-600. Those unusual ionic conditions did not deprive axons of their ability to produce ordinary action potentials in physiological solutions. The experimental conditions employed and the results obtained were very close to those for some of the artificial membrane models. Applicability of the physico-chemical theories developed for these models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranow, R.H. 1963. Periodic behavior in charged membranes and its physical and biological implications.Proc. Natl. Acad. Sci. USA 50:1066–1070

    PubMed  Google Scholar 

  • Cabantchik, Z.I., Knauf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of ‘probes’.Biochim. Biophys. Acta 515:239–302

    PubMed  Google Scholar 

  • Ehrenstein, G. 1971. Excitability in lipid bilayer membranes. In: Biophysics and Physiology of Excitable Membranes. W.J. Adelman, editor. pp. 463–476. Van Nostrand Reinhold, New York

    Google Scholar 

  • Franck, U.F. 1963. Über das elektrochemische Verhalten von porösen Ionenaustauschermembranen.Ber. Bunsenges. Phys. Chem. 67:657–671

    Google Scholar 

  • Frankenhaueuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218–244

    Google Scholar 

  • Glansdorff, P., Prigogine, I. 1971. Thermodynamic Theory of Structure, Stability and Fluctuations. pp. 272–286. Wiley-Interscience, London

    Google Scholar 

  • Kamo, N., Yoshioka, T., Yoshida, M., Sugita, T. 1973. Transport phenomena in a model membrane accompanying a conformational change: Transient processes in response to external stimuli.J. Membrane. Biol. 12:193–205

    Article  Google Scholar 

  • Katchalsky, A., Kedem, O. 1962. Thermodynamics of flow processes in biological systems.Biophys. J. 2, 53–78

    PubMed  Google Scholar 

  • Katchalsky, A., Spangler, R. 1968. Dynamics of membrane processes.Q. Rev. Biophys. 1:127–175

    PubMed  Google Scholar 

  • Kobatake, Y. 1970. Transition between two steady states in a porous charged membrane.Physica 48:301–312

    Article  Google Scholar 

  • Kobatake, Y., Fujita, H. 1964a. Flows through charged membranes. I. Flip-flop current vs voltage relation.J. Chem. Phys. 40:2212–2218

    Article  Google Scholar 

  • Kobatake, Y., Fujita, H. 1964b. Flows through charged membranes. II. Oscillation phenomena.J. Chem. Phys. 40:2219–2222

    Article  Google Scholar 

  • Kohlhardt, M., Bauer, B., Krause, H., Fleckenstein, A. 1972. New selective inhibitors of the transmembrane Ca conductivity in mammalian myocardial fibres. Studies with the voltage clamp technique.Experientia 28:288–289

    PubMed  Google Scholar 

  • Mears, P., Page, K.R. 1972. Rapid force-flux transitions in highly porous membranes.Phil. Trans. R. Soc. London. A. 272:1–46

    Google Scholar 

  • Meves, H., Pichon, Y. 1977. The effect of internal and external 4-aminopyridine on the potassium currents in intracellularly perfused squid giant axons.J. Physiol. (London) 268:511–532

    Google Scholar 

  • Monnier, A.M. 1968. Experimental and theoretical data on excitable artificial lipidic membranes.J. Gen. Physiol. 51:26s-36s

    PubMed  Google Scholar 

  • Monnier, A.M., Monnier, A., Goudeau, H., Rebuffel-Reynier, A.M. 1965. Electrically excitable artificial membranes.J. Cell. Comp. Physiol. 66:147–154

    Article  Google Scholar 

  • Moore, J.W. 1959. Excitation of the squid axon membrane in isosmotic potassium chloride.Nature (London) 183:265–266

    Google Scholar 

  • Moore, J.W. 1971. Voltage clamp methods.In: Biophysics and Physiology of Excitable Membranes. W.J. Adelman, editor. pp. 143–167. Van Nostrand Reinhold, New York

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Action potential phenomena in experimental bimolecular lipid membranes.Nature (London) 213:603–604

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1968. Resting and action potentials in experimental bimolecular lipid membranes.J. Theor. Biol. 18:222–258

    Article  PubMed  Google Scholar 

  • Nakajima, S. 1966. Analysis of K inactivation and TEA action in the supramedullary cells of puffer.J. Gen. Physiol. 49:629–640

    Article  PubMed  Google Scholar 

  • Nakajima, S., Kusano, K. 1966. Behavior of delayed current under voltage clamp in the supramedullary neurons of puffer.J. Gen. Physiol. 49:613–628

    Article  PubMed  Google Scholar 

  • Reuben, J.P., Werman, R., Grundfest, H. 1961. The ionic mechanism of hyperpolarizing responses in lobster muscle fibers.J. Gen. Physiol. 45:243–265

    PubMed  Google Scholar 

  • Rojas, E., Ehrenstein, G. 1965. Voltage clamp experiments on axons with potassium as the only internal and external cation.J. Cell. Comp. Physiol. 66:71–77

    Article  Google Scholar 

  • Segal, J. 1958. An anodal threshold phenomenon in the squid gaint axon.Nature (London) 182:1370–1372

    Google Scholar 

  • Shashoua, V.E. 1967. Electrically active polyelectrolyte membranes.Nature (London) 215:846–847

    Google Scholar 

  • Shashoua, V.E. 1969. Electrically active protein and polynucleic acid membranes.In: The Molecular Basis of Membrane Function. D.C. Tosteson, editor. pp. 147–159. Prentice-Hall, Englewood, N.J.

    Google Scholar 

  • Tasaki, I. 1959. Demonstration of two stable states of the nerve membrane in potassium-rich media.J. Physiol. (London) 148:306–331

    Google Scholar 

  • Tasaki, I. 1968. Nerve Excitation. pp. 24–26. Thomas, Springfield, Ill.

    Google Scholar 

  • Tasaki, I., Watanabe, A., Lerman, L. 1967. Role of divalent cations in excitation of squid giant axons.Am. J. Physiol. 213:1465–1474

    PubMed  Google Scholar 

  • Tasaki, I., Watanabe, A., Takenaka, T. 1962. Resting and action potential of intracellularly perfused squid giant axon.Proc. Natl. Acad. Sci. USA 48:1177–1184

    PubMed  Google Scholar 

  • Teorell, T. 1955. A contribution to the knowledge of rhythmical transport processes of water and salts.Exp. Cell Res. Suppl. 3:339–345

    Google Scholar 

  • Teorell, T. 1959a. Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomena in artificial membranes.J. Gen. Physiol. 42:831–845

    PubMed  Google Scholar 

  • Teorell, T. 1959b. Electrokinetic membrane processes in relation to properties of excitable tissues. II. Some theoretical considerations.J. Gen. Physiol. 42:847–863

    PubMed  Google Scholar 

  • Teorell, T. 1961. Oscillatory electrophoresis in ion exchange membranes.Ark. Kemi (ed. R. Swed. Acad. Sci.) 18:401–408

    Google Scholar 

  • Teorell, T. 1962. Excitability phenomena in artificial membranes.Biophys. J. 2:27–52

    PubMed  Google Scholar 

  • Terakawa, S. 1981. Ca−K bi-ionic action potential in squid giant axons.J. Membrane Biol. 63:41–50

    Google Scholar 

  • Yeh, J.Z., Oxford, G.S., Wu, C.H., Narahashi, T. 1976. Dynamics of aminopyridine block of potassium channels in squid axon membrane.J. Gen. Physiol. 68:519–535

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terakawa, S. Periodic responses in squid axon membrane exposed intracellularly and extracellularly to solutions containing a single species of salt. J. Membrain Biol. 63, 51–59 (1981). https://doi.org/10.1007/BF01969445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01969445

Key words

Navigation