The Journal of Membrane Biology

, Volume 63, Issue 1–2, pp 25–30 | Cite as

Cyclic AMP and intracellular ionic activities innecturus gallbladder

  • A. Diez de los Rios
  • N. E. DeRose
  • W. McD Armstrong
Articles

Summary

Open-tip and liquid ion-exchanger microelectrodes were used to study the effects of cAMP (6mm, added to the serosal medium) on apical membrane potential (E m ) and intracellular sodium, potassium, and chloride activities (a Na i ,a K i ,a Cl i ) inNecturus gallbladder under open-circuit conditions. Transepithelial potential difference (E Tr ) was also measured. In the presence of cAMP,a Cl i fell from about 1.5 times its equilibrium value to a level that corresponded to electrochemical equilibrium across the apical and basolateral cell membranes. Under these conditionsa Na i decreased anda K i increased,E m was unchanged andE Tr increased from virtually zero to a small but significant serosal positive value. The cAMP-induced increase ina K i was abolished when Cl-free incubation media were used. Addition of the Ca++-ionophore A23187 (0.5 ⧎g/ml) to the serosal medium had no effect onE m ,E Tr , ora Cl i . When A23187 was added to the mucosal medium,E m and the basolateral membrane potential hyperpolarized by about 20 mV and an increase in the outwardly directed electrochemical driving force for Cl was observed. These results indicate that cAMP inhibits coupled transapical Na−Cl entry into epithelial cells ofNecturus gallbladder and suggest that this inhibition may not be mediated by an increase in intracellular Ca++ concentration.

Key words

Necturus gallbladder cyclic AMP calcium ionophore intracellular ionic activities membrane potentials liquid ion-exchanger microelectrodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, W. McD., Bixenman, W.R., Frey, K.F., Garcia-Diaz, J.F., O'Regan, M.G., Owens, J.L. 1979. Energetics of coupled Na+ and Cl entry into epithelial cells of bullfrog small intestine.Biochim. Biophys. Acta 551:207–219PubMedGoogle Scholar
  2. Armstrong, W. McD., Garcia-Diaz, J.F., Diez de los Rios, A. 1980. Energetics of coupled Na−Cl entry in absorptive cells of leaky epithelia.J. Gen. Physiol 76:4A (Abstr).Google Scholar
  3. Armstrong, W. McD., Youmans, S.J. 1980. The role of bicarbonate ions and of adenosine 3′, 5′-mono-phosphate (cAMP) in chloride transport by epithelial cells of bullfrog small intestine.Ann. N. Y. Acad. Sci. USA 341:139–155Google Scholar
  4. Berridge, M.J. 1979. Relationship between calcium and the cyclic nucleotides in ion secretion.In: Mechanism of Intestinal Secretion. H.J. Binder, editor. pp. 65–81. Alan R. Liss, New YorkGoogle Scholar
  5. Bolton, J.E., Field, M. 1977. Ca ionophore-stimulated ion secretion in rabbit ileal mucosa: Relation to actions of cyclic 3′, 5′-AMP and carbamylcholine.J. Membrane Biol. 35:159–174CrossRefGoogle Scholar
  6. Curci, S., Frömter, E. 1979. Micropuncture of lateral intercellular spaces ofNecturus gallbladder to determine space fluid K+ concentration.Nature (London) 278:355–357Google Scholar
  7. Diamond, J.M., Bossert, W.H. 1967. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia.J. Gen. Physiol. 50:2061–2083PubMedGoogle Scholar
  8. Duffey, M.E., Thompson, S.M., Frizzell, R.A., Schultz, S.G. 1979. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder.J. Membrane Biol. 50:331–341CrossRefGoogle Scholar
  9. Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229–245CrossRefGoogle Scholar
  10. Field, M. 1978. Cholera toxin, adenylate cyclase and the process of active secretion in the small intestine: The pathogenesis of diarrhea in cholera.In: The Physiological Basis for Disorders of Biomembranes. T.E. Andreoli, J.F. Hoffman, and D.D. Fanestil, editors. Vol. 5, pp. 877–899. Plenum Press, New YorkGoogle Scholar
  11. Field, M. 1979. Intracellular mediators of secretion in the small intestine.In: Mechanisms of Intestinal Secretion. H.J. Binder, editor. pp. 83–91. Alan R. Liss, New YorkGoogle Scholar
  12. Frizzell, R.A. 1977. Active chloride secretion by rabbit colon: Calcium-dependent stimulation by ionophore A23187.J. Membrane Biol. 35:175–187CrossRefGoogle Scholar
  13. Frizzell, R.A., Dugas, M.C., Schultz, S.G. 1975. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process.J. Gen. Physiol. 65:769–795PubMedGoogle Scholar
  14. Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature New Biol. 235:9–13PubMedGoogle Scholar
  15. Fujimoto, M., Kubota, T. 1976. Physicochemical properties of a liquid ion-exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650PubMedGoogle Scholar
  16. Garcia-Diaz, J.F., Armstrong, W. McD. 1980. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences inNecturus gallbladder.J. Membrane Biol. 55:213–222CrossRefGoogle Scholar
  17. Graf, J., Giebisch, G. 1979. Intracellular sodium activity and sodium transport inNecturus gallbladder epthelium.J. Membrane Biol. 47:327–355CrossRefGoogle Scholar
  18. Heintze, K., Petersen, K.U., Olles, P., Saverymuttu S.H., Wood, J.R. 1979. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: A bicarbonate-chloride exchange.J. Membrane Biol. 45:43–59CrossRefGoogle Scholar
  19. Henin, S., Cremaschi, D. 1975. Transcellular ion route in rabbit gallbladder. Electrical properties of the epithelial cells.Pfluegers Arch. 355:125–139CrossRefGoogle Scholar
  20. Nellans, H.N., Frizzell, R.A., Schultz, S.G. 1974. Brush-border processes and transepithelial Na and Cl transport by rabbit ileum.Am. J. Physiol. 226:1131–1141PubMedGoogle Scholar
  21. O'Doherty, J., Garcia-Diaz, J.F., Armstrong, W.McD. 1979. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements.Science 203:1349–1351PubMedGoogle Scholar
  22. Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239–259CrossRefGoogle Scholar
  23. Reuss, L., Bello-Reuss, E., Grady, T.P. 1980. Cyanide increases K+ conductance in gallbladder epithelial cell membranes.Fed. Proc. 39:1710 (Abstr.)Google Scholar
  24. Reuss, L., Finn, A.L. 1975. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions.J. Membrane Biol. 25:115–139CrossRefGoogle Scholar
  25. Reuss, L., Grady, T.P. 1979. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium.J. Membrane Biol. 51:15–32CrossRefGoogle Scholar
  26. Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:356–362CrossRefGoogle Scholar
  27. Reuss, L., Weinman, S.A., Grady, T.P. 1980. Intracellular K+ activity and its relation to basolateral membrane ion transport inNecturus gallbladder epithelium.J. Gen. Physiol. 76:33–52PubMedGoogle Scholar
  28. Smith, P.L., Orellana, S., Field, M. 1980. Role of medium pH in the regulation of chloride transport in the intestine of the winter flounder,Pseudopleuronectes americanus.Bull. Mt. Desert Isl. Biol. Lab. 19:24–27Google Scholar
  29. Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254CrossRefGoogle Scholar
  30. Van Os, C.H., Slegers, J.F.G. 1975. The electrical potential profile of gallbladder epithelium.J. Membrane Biol. 24:341–363CrossRefGoogle Scholar
  31. White, J.F., Armstrong, W. McD. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine.Am. J. Physiol. 221:194–201PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • A. Diez de los Rios
    • 1
  • N. E. DeRose
    • 1
  • W. McD Armstrong
    • 1
  1. 1.Department of PhysiologyIndiana University School of MedicineIndianapolis

Personalised recommendations