Advertisement

Agents and Actions

, Volume 25, Issue 1–2, pp 171–181 | Cite as

Proteoglycan biosynthesis by rabbit articular chondrocytes treated withd-penicillamine

  • P. Legendre
  • M. Bouakka
  • M. Langris
  • J. -P. Pujol
  • R. Beliard
  • G. Loyau
  • J. Bocquet
Immunosuppression and Inflammations

Abstract

Rabbit articular chondrocytes in confluent monolayer cultures were treated withd-Penicillamine (d-Pen) during 3 or 5 days. The [35S]-sulfate incorporation in neosynthesized proteoglycans was not modified byd-Pen doses ranging from 50 to 800 μg/ml. After treatment during 5 days withd-Pen concentrations of 50 or 400 μg/ml, the chemical characteristics of proteoglycans from medium and cell-layer were determined. The aggregation capacity of proteoglycans from medium, the monomer molecular size, the glycosaminoglycan chain length and the relative rates of the different glycosaminoglycans (chondroitins, chondroitin 6-sulfate, chondroitin 4-sulfate, hyaluronic acid) remained unchanged. These results suggest thatd-Pen does not alter some of the cartilage mechanical properties due to the presence of proteoglycans.

Keywords

Mechanical Property Chain Length Hyaluronic Acid Chemical Characteristic Molecular Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Jaffe, H. Scheinberg and I. Sterlieb,Proceedings of the international symposium on Penicillamine. J. Rheumatol.8, 1–181 (1981).PubMedGoogle Scholar
  2. [2]
    J. C. Crawhall,Experience with penicillamine in the treatment of cystinuria. J. Rheumatol. vol. 8 (suppl. 7), 100–102 (1981).PubMedGoogle Scholar
  3. [3]
    S. Selander, K. Kramer and L. Hallberg,Studies in lead poisoning. Br. J. Ind. Med.23, 282–291 (1966).PubMedGoogle Scholar
  4. [4]
    W. H. Lyle,Penicillamine. Clin. Rheum. Dis.5, 569–601 (1979).Google Scholar
  5. [5]
    P. A. Bacon, D. R. Blake, G. J. M. Alexander and N. D. Hall,Alterations in immunologicals parameters associated with d-Penicillamine therapy.In:Modulation of autoimmunity and disease. (Ed. R. N. Maini and H. Berry) pp. 10–15, Praeger, New York 1981.Google Scholar
  6. [6]
    R. Wernick, P. Merryman, I. Jaffe and M. Ziff,IgG and IgM rheumatoid factors in rheumatoid arthritis, quantitative response to penicillamine therapy and relationship to disease activity. Arthritis Rheum.26, 593–598 (1983).PubMedGoogle Scholar
  7. [7]
    E. J. Holborrow,Alterations in rheumatoid factors, immune complexes and acute phase reactants associated with d-Penicillamine therapy. InModulation of autoimmunity and disease. (Ed. R. N. Maini and H. Berry) pp. 3–9, Praeger, New York 1981.Google Scholar
  8. [8]
    C. A. Dinarello,Interleukin-1. Rev. Infect. Dis.6, 51–95 (1984).PubMedGoogle Scholar
  9. [9]
    J. A. Tyler,Articular cartilage cultured with catabolin (pig interleukin-1) synthesizes a decreased number of normal proteoglycan molecules. Biochem. J.227, 869–878 (1985).PubMedGoogle Scholar
  10. [10]
    T. Krakauer, J. J. Oppenheim and H. E. Jasin,Human Interleukin-1 mediates cartilage matrix degradation. Cell Immunol.91, 92–99 (1985).CrossRefPubMedGoogle Scholar
  11. [11]
    M. Brisset, J. P. Pujol, F. Arenzana-Seisdedos, J. L. Virelizier, H. Penfornis, J. Farjanel, A. Rattner, J. Bocquet, R. Béliard and G. Loyau,d-penicillamine inhibition of interleukin-1 production, a possible mechanism for its effect on synovial collagen synthesis. Int. J. Tiss. Reac.8, 279–287 (1986).Google Scholar
  12. [12]
    J. Lunec, S. P. Halloran, A. G. White and T. L. Dormandy,Free-radical oxydation (peroxydation) products in serum and synovial fluid in rheumatoid arthritis. J. Rheumatol.8, 233–245 (1981).PubMedGoogle Scholar
  13. [13]
    J. Schalkwijk, W. B. van den Berg, L. B. A. van de Putte and L. A. B. Joosten,Hydrogen peroxide suppresses the proteoglycan synthesis of intact articular cartilage. J. Rheumatol.12, 205–210 (1985).PubMedGoogle Scholar
  14. [14]
    E. J. Bates, C. C. Johnson and D. A. Lowther,Inhibition of proteoglycan synthesis by hydrogen peroxide in cultured bovine articular cartilage. Biochim. Biophys. Acta838, 221–228 (1985).PubMedGoogle Scholar
  15. [15]
    M. H. Chung, L. Kesner and P. C. Chan,Degradation of articular cartilage by copper and hydrogen peroxide. Agents and Actions15, 328–335 (1984).CrossRefPubMedGoogle Scholar
  16. [16]
    W. H. Betts and L. G. Cleland,Effect of metal chelators and anti-inflammatory drugs on the degradation of hyaluronic acid. Arthritis Rheum.25, 1469–1476 (1982).PubMedGoogle Scholar
  17. [17]
    W. H. Betts, L. G. Cleland, D. J. Gee and M. W. Whitehouse,Effects of d-penicillamine on a model of oxygenderived free radical mediated tissue damage. Agents and Actions14, 283–290 (1984).CrossRefPubMedGoogle Scholar
  18. [18]
    R. A. Cuperus, A. O. Muijsers and R. Wever,Antiarthritic drugs containing thiol groups scavenge hypochlorite and inhibit it its formation by myeloperoxidase from human leukocytes. Arthritis Rheum.28, 1228–1233 (1985).PubMedGoogle Scholar
  19. [19]
    P. E. Lipsky and M. Ziff,The effect of d-Penicillamine on mitogen induced human lymphocyte proliferation, synergistic inhibition by d-Penicillamine and copper salts. J. Immunol.120, 1006–1013 (1978).PubMedGoogle Scholar
  20. [20]
    P. E. Lipsky and M. Ziff,Inhibition of human helper T cell function in vitro by d-Penicillamine and CuSO 4 J. Clin. Invest.65, 1069–1076 (1980).PubMedGoogle Scholar
  21. [21]
    P. E. Lipsky,Immunosuppressions by d-Penicillamine in vitro. Inhibition of human T-lymphocyte proliferation by copper or ceruloplasmin-dependent generation of hydrogen-peroxide and protection by monocytes. J. Clin. Invest.73, 53–65 (1984).PubMedGoogle Scholar
  22. [22]
    N. J. Olsen and H. E. Jasin,Decreased pokeweed mitogen-induced IgM and IgM rheumatoid factor synthesis in rheumatoid arthritis patients treated with gold sodium thiomalate or penicillamine. Arthritis Rheum.27, 985–994 (1984).PubMedGoogle Scholar
  23. [23]
    V. Jouis, J. Bocquet, J. P. Pujol, M. Brisset and G. Loyau,Effect of ascorbic acid on secreted proteoglycans from rabbit articular chondrocytes. FEBS Letters186, 223–240 (1985).CrossRefGoogle Scholar
  24. [24]
    P. D. Benya, S. R. Padilla and M. E. Nimmi,The progeny of rabbit articular chondrocytes synthezise collagens type I and III but not type II. Biochemistry16, 865–872 (1977).CrossRefPubMedGoogle Scholar
  25. [25]
    H. J. Philips and J. E. Terryberry,Counting actively metabolizing tissue cultured cells. Exp. Cell Res.13, 341–347 (1957).CrossRefPubMedGoogle Scholar
  26. [26]
    M. Daireaux, H. Penfornis, M. Langris, J. Bocquet, J. P. Pujol, R. Béliard and G. Loyau,Effect of a mononuclear cell culture medium on collagen and glycosaminoglycan production by synovial cells in culture. FEBS Letters132, 93–97 (1981).CrossRefPubMedGoogle Scholar
  27. [27]
    T. R. Oegema, V. C. Hascall and D. D. Dziewaitkowski,Isolation and characterization of proteoglycans from Swarm rat chondrosarcoma. J. Biol. Chem.250, 6151–6159 (1975).PubMedGoogle Scholar
  28. [28]
    T. E. Hardingham, R. J. F. Ewins and H. Muir,Cartilage proteoglycan structure and heterogeneity of the protein core and the effects of specific protein modifications on the binding to hyaluronate. Biochem. J.157, 127–143 (1976).PubMedGoogle Scholar
  29. [29]
    D. M. Carlson,Structure and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J. Biol. Chem.243, 616–626 (1968).PubMedGoogle Scholar
  30. [30]
    T. O. Kleine and B. Merten,A procedure for the simultaneous determination of small quantities of hyaluronate and isomeric chondroitin sulfates by chondroitinases. Anal. Biochem.118, 185–190 (1981).CrossRefPubMedGoogle Scholar
  31. [31]
    A. M. Saamanen and M. Tammi,Determination of unsaturated GAG-disaccharides by spectrophotometry on thin layer chromatographic plates. Anal. Biochem.140, 354–359 (1984).CrossRefPubMedGoogle Scholar
  32. [32]
    A. Wasteson,A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J. Chromatogr.59, 87–97 (1971).CrossRefPubMedGoogle Scholar
  33. [33]
    M. B. E. Sweet, E. J. M. Thonar and J. Marsh,Age related changes in proteoglycan structures. Arch. Biochem. Biophys.198, 439–448 (1979).CrossRefPubMedGoogle Scholar
  34. [34]
    L. S. Lohmander, S. de Luca, B. Nilsson, V. C. Hascall and C. C. Caputo,Oligosaccharides on proteoglycans from the Swarm rat chondrosarcoma. J. Biol. Chem.255, 6084–6091 (1980).PubMedGoogle Scholar
  35. [35]
    S. de Luca, L. S. Lohmander, B. Nilsson, V. C. Hascall and A. I. Caplan,Proteoglycan from chick limb bud chondrocyte cultures, keratan sulfate and oligosaccharides which contain mannose and sialic acid. J. Biol. Chem.255, 6077–6083 (1980).PubMedGoogle Scholar
  36. [36]
    H. D. Keiser and C. J. Malemud,A comparison of the proteoglycans produced by rabbit articular chondrocytes in monolayer and spinner culture and those of bovine nasal cartilage. Connect Tissue Res.11, 273–284 (1983).PubMedGoogle Scholar
  37. [37]
    G. E. Kempson, D. A. Tuke, J. T. Dingle, A. J. Barret and P. H. Horsfield,The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim. Biophys. Acta428, 741–760 (1976).PubMedGoogle Scholar
  38. [38]
    C. J. Handley, D. A. Lowther, D. J. Mc Quillan,Minireview: The structure and synthesis of proteoglycans of articular cartilage. Cell Biology International Reports9, 753–782 (1985).CrossRefPubMedGoogle Scholar
  39. [39]
    M. A. Campbell, C. J. Handley, V. C. Hascall, R. A. Campbell and D. A. Lowther,Turnover of proteoglycans in cultures of bovine articular cartilage. Arch. Biochem. Biophys.234, 275–289 (1984).CrossRefPubMedGoogle Scholar
  40. [40]
    M. Adolphe,Articular chondrocytes in culture, applications in pharmacology. InAdvances in cell culture, vol. 5. (Ed. K. Maramorosch) pp. 19–42. Academic Press Inc., New York 1987.Google Scholar
  41. [41]
    M. J. Palmoski and K. D. Brandt,In vivo effect of aspirin on canine osteoarthritic cartilage. Arthritis Rheum.6, 994–1001 (1983a).Google Scholar
  42. [42]
    M. J. Palmoski and K. D. Brandt,Relationship between matrix proteoglycan content and the effects of salicylate and indomethacin on articular cartilage. Arthritis Rheum.26, 528–531 (1983b).PubMedGoogle Scholar
  43. [43]
    M. Bouakka, G. Loyau and J. BoucquetEffect of a glycosaminoglycan-peptide complex (GP-C) on the biosynthesis of proteoglycans in articular chondrocytes treated with Interleukin-1. Curr. Ther. Res.43, 588–599 (1988).Google Scholar
  44. [44]
    D. Mitrovic, E. McCall, P. Front, F. Aprile, N. Darmon and F. Dray,Anti-inflamatory drugs, prostanoid and proteoglycan production by cultured bovine articular chondrocytes. Prostaglandins28, 417–434 (1984).CrossRefPubMedGoogle Scholar
  45. [45]
    J. Bocquet, M. Daireaux, M. Langris, V. Jouis, J. P. Pujol, R. Béliard and G. Loyau,Effect of an Interleukin-1 like factor (mononuclear cell factor) on proteoglycan synthesis in cultured human articular chondrocytes. Biochem. Biophys. Res. Commun.134, 539–549 (1986).CrossRefPubMedGoogle Scholar
  46. [46]
    K. Gibbs and J. M. Walshe,Studies with 35 S-labelled Dl-Penicillamine in patients with Wilson's disease. Q. J. Med.40, 275–287 (1971).PubMedGoogle Scholar
  47. [47]
    A. G. Mowatt,Neutrophil chemotaxis in rheumatoid arthritis. Effect of d-Penicillamine, gold salts and levamisole. Ann. Rheum. Dis.37, 1–8 (1978).PubMedGoogle Scholar
  48. [48]
    V. A. Ruiz-Torres,Zur Pharmakokinetik und zum Stoffwechsel von d-und l-Penicillamin. I Mitteilung, Blutspiegel, Transport und Eiweißbindung. Arzneim. Forsch.4, 914–917 (1974).Google Scholar
  49. [49]
    V. A. Ruiz-Torres,Zur Pharmakokinetik und zum Stoffwechsel von d-und l-Penicillamin. II Mitteilung. Verteilung von d-und l-Penicillamin 14 CM Organismus der Ratte nach peroraler Verabfolgung. Arzneim. Forsch.24, 1043–1046 (1974).Google Scholar
  50. [50]
    R. K. Jacoby,Effect of homologous synovial membrane on adult human articular cartilage in organ culture and failure to influence it with d-Penicillamine. Ann. Rheum. Dis.39, 53–58 (1980).PubMedGoogle Scholar
  51. [51]
    W. D. Comper, M. de Witt and D. A. Lowther,Effect of anti-inflammatory drugs on proteoglycan degradation as studied in rabbit articular cartilage in organ culture. Biochem. Pharmacol.30, 459–468 (1981).CrossRefPubMedGoogle Scholar
  52. [52]
    H. Sheppeard, L. M. C. Pilsworth, B. Hazleman and J. T. Dingle,Effect on antirheumatoid drugs on the production and action of porcine catabolin. Ann. Rheum. Dis.41, 463–468 (1982).PubMedGoogle Scholar
  53. [53]
    A. Maroudas, I. Ziv, N. Weisman and M. Venn,Fifth international congress on biorheology symposium: some biorheological aspects of joint diseases. Studies of hydration and pressure of joint diseases. Studies of hydration and swelling pressure in normal and osteoarthritic cartilage. Biorheology22, 159–169 (1985).PubMedGoogle Scholar
  54. [54]
    P. J. Roughley and J. S. Mort,Editorial review: Ageing and the aggregating proteoglycans of human articular cartilage. Clinical Science71, 337–344 (1986).PubMedGoogle Scholar
  55. [55]
    A. P. A. Prins, J. M. Lipman, C. A. McDevitt and L. Sokoloff,Effect of purified growth factors on rabbit articular chondrocytes in monolayer culture. II sulfated proteoglycan synthesis. Arthritis Rheum.25, 1228–1238 (1982).PubMedGoogle Scholar
  56. [56]
    M. T. Bayliss, G. D. Ridgway and S. Y. Ali,Differences in the rates of aggregation of proteoglycans from human articular cartilage and chondrosarcoma. Biochem. J.215, 705–708 1983).PubMedGoogle Scholar
  57. [57]
    H. Ohno, J. Blackwell, A. M. Jamieson, D. A. Carrino and A. I. Caplan,Calibration of the relative molecular mass of proteoglycan subunit by column chromatography on Sepharose CL-2B. Biochem. J.235, 553–557 (1986).PubMedGoogle Scholar
  58. [58]
    V. C. Hascall and S. W. Sadjera,Physical properties and polydispersity of proteoglycans from bovine nasal cartilage. J. Biol. Chem.245, 4920–4930 (1970).PubMedGoogle Scholar
  59. [59]
    A. R. Poole,Review article: Proteoglycans in health and disease; structures and functions. Biochem. J.236, 1–14 (1986).PubMedGoogle Scholar
  60. [60]
    F. Vittur, M. F. Dumontier, N. Stagny and M. Corvol,In vitro biosynthesis by articular chondroncytes of a specific low molecular size proteoglycan pool. FEBS Letters153, 187–193 (1983).CrossRefPubMedGoogle Scholar
  61. [61]
    C. J. Malemud and R. S. Papay,Stimulation of cyclic AMP in chondrocyte cultures: effects on sulfated proteoglycan synthesis. FEBS Letters167: 343–351 (1984a).CrossRefPubMedGoogle Scholar
  62. [62]
    C. J. Malemud and R. S. Papay,The in vitro cell culture age and cell density of articular chondrocytes alter sulfated proteoglycan biosynthesis. J. Cell Physiol.121, 558–568 (1984b).CrossRefPubMedGoogle Scholar
  63. [63]
    C. J. Malemud and R. S. Papay,Rabbit chondroncytes maintained in serum free medium. I Synthesis and secretion of hydrodynamically small proteoglycans. Exp. Cell Res.167, 440–452 (1986).CrossRefPubMedGoogle Scholar
  64. [64]
    J. Urban, A. Maroudas, M. T. Bayliss and J. Dillon,Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology16, 447–464 (1979).PubMedGoogle Scholar
  65. [65]
    A. Maroudas and C. Bannon,Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology18, 619–632 (1981).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • P. Legendre
    • 1
  • M. Bouakka
    • 1
  • M. Langris
    • 1
  • J. -P. Pujol
    • 1
  • R. Beliard
    • 2
  • G. Loyau
    • 1
  • J. Bocquet
    • 1
  1. 1.Laboratoire de Biochimie du Tissu Conjonctif, U.F.R. de SciencesC.H.U. Côte de NacreCaen cedexFrance
  2. 2.Laboratoire d'Anatomie Pathologique, U.F.R. de MédecineC.H.U. Côte de NacreCaen cedexFrance

Personalised recommendations