Skip to main content
Log in

A heat-inducibleAdh gene as a reporter gene for a negative selection in transgenicArabidopsis

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Chimaeric genes were constructed containing theArabidopsis alcohol dehydrogenase gene under the control of different soyabean heat shock promoters. TransgenicArabidopsis plants, derived from theAdh-null mutant R003 by transformation with the different constructs, showed heat-inducible expression of ADH in leaves. Different levels were generated using the different constructs; transcriptional and translational fusions with theGmhsp 17.6-L heat shock gene were most efficient. Repeated cycles of heat stress and recovery periods increased the ADH levels significantly. Constitutive background levels of ADH activity were negligible in these plants but heat-inducibility was significantly reduced during imbibition and early stages of seed germination. The induction of high levels of ADH activity after 4–6 days following imbibition and vernalization caused susceptibility to a subsequent treatment with allyl alcohol. The use of ectopic expression ofAdh as a selection marker for the isolation of mutants of signal transduction systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, W. and Pühler, A. (1988) A family of high-copynumber plasmid vectors with single end-label sites for rapid nucleotide sequencing.Gene 70, 171–9.

    Article  PubMed  Google Scholar 

  • Baumann, G., Raschke, E., Bevan, M. and Schöffl, F. (1987) Functional analysis of sequences required for transcriptional activation of a soybean heat shock gene in transgenic tobacco plants.EMBO J. 6, 1161–6.

    Google Scholar 

  • Bevan, M.W. (1984) BinaryAgrobacterium vectors for plant transformation.Nucl. Acids Res. 12, 8711–21.

    PubMed  Google Scholar 

  • Bradford, M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–54.

    PubMed  Google Scholar 

  • Chang, C. and Meyerowitz, E.M. (1986) Molecular cloning and DNA sequence of theArabidopsis thaliana alcohol dehydrogenase gene.Proc. Natl Acad. Sci. USA 83, 1408–12.

    PubMed  Google Scholar 

  • Czarnecka, E., Key, J.L. and Gurley, W.B. (1989) Regulatory domains of the Gmhsp 17.5-E heat shock promoter of soybean: a mutational analysis.Mol. Cell. Biol. 9, 3457–63.

    PubMed  Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: version II.Pl. Mol. Biol. Rep. 1, 19–21.

    Google Scholar 

  • DeRocher, A.E. and Vierling, E. (1994) Developmental control of small heat shock protein expression during pea seed maturation.Plant J. 5, 81–92.

    Article  PubMed  Google Scholar 

  • Dolferus, R. and Jacobs, M. (1984) Polymorphism of alcohol dehydrogenase inArabidopsis thaliana (L.) Heynh.: genetical and biochemical characterization.Biochem. Genet. 22, 817–38.

    Article  PubMed  Google Scholar 

  • Dolferus, R. and Jacobs, M. (1991) Another ADH-system from Arabidopsis thaliana. an overview.Maydica 36, 169–87.

    Google Scholar 

  • Dolferus, R., Marbaix, G. and Jacobs, M. (1985) Alcohol dehydrogenase inArabidopsis: analysis of the induction phenomenon in plantlets and tissue culture.Mol. Gen. Genet. 199, 256–64.

    Article  Google Scholar 

  • Donald, R.G.K. and Cashmore, A.R. (1990) Mutation in either G box or I box sequences profoundly affects expression from theArabidopsis rbcS-1A promoter.EMBO J. 9, 1717–26.

    PubMed  Google Scholar 

  • Findly, R.C., Alavi, H. and Platt, T. (1988) Isolation of mutations that act intrans to alter expression from a yeasthsp70 promoter.Mol. Cell. Biol. 8, 3423–31.

    PubMed  Google Scholar 

  • Freeling, M. (1976) Intragenic recombination in maize: pollen analysis methods and the effect of parental Adh1+isoalleles.Genetics 83, 701–17.

    Google Scholar 

  • Györgyey, J., Gartner, A., Nemeth, K., Magyar, Z., Hirt, H., Heberle-Bors, E. and Dudits, D. (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis.Pl. Mol. Biol. 16, 999–1007.

    Article  Google Scholar 

  • Helm, K.W. and Abernethy, R.H. (1990) Heat shock proteins and their mRNAs in dry and early imbiding embryos of wheat.Plant Physiol. 93, 1626–33.

    Google Scholar 

  • Hernandez, L.D. and Vierling, E. (1993) Expression of low molecular weight heat shock proteins under field conditions.Pl. Phys. 101, 1209–16.

    Google Scholar 

  • Jacobs, M., Dolferus, R. and Van Den Bossche, D. (1988) Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants ofArabidopsis thaliana (L.) Heynh.Biochem. Genet. 26, 105–22.

    Article  PubMed  Google Scholar 

  • Karlin-Neumann, G.A., Bursslan, J.A. and Tobin, E.M. (1991) Phytochrome control of thetms2 gene in transgenicArabidopsis: a strategy for selecting mutants in the signal transduction pathway.Pl. Cell 3, 573–82.

    Article  Google Scholar 

  • Mann, H.D. and Whitney, D.R. (1947) On a test of whether one of two random variables is stochastically larger than the other.Ann Math. Statist. 18, 50.

    Google Scholar 

  • Matzke, M. and Matzke, A.J.M. (1993) Genomic imprinting in plants; parental effects andtrans-inactivation phenomena.Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 44, 53–76.

    Article  Google Scholar 

  • Nagao, R.T., Czarnecka, E., Gurley, W.B., Schöffl, F. and Key, J.L. (1985) Genes for low-molecular-weight heat shock proteins of soybean: sequence analysis of a multigene family.Mol. Cell. Biol. 5, 3417–28.

    PubMed  Google Scholar 

  • Nakai, A. and Morimoto, R.I. (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway.Mol. Cell. Biol. 13, 1983–97.

    PubMed  Google Scholar 

  • Nussaume, L, Vicentz, M. and Caboche, M. (1991) Constitutive nitrate reductase: a dominant conditional marker for plant genetics.Plant J. 1, 267–74.

    Article  Google Scholar 

  • Parker-Thornburg, J. and Bonner, J.J. (1987) Mutations that induce the heat shock response ofDrosophila.Cell 51, 763–72.

    Article  PubMed  Google Scholar 

  • Pitto, L., Gallie, D.R. and Walbot, V. (1992) Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts.Pl. Physiol. 100, 1827–33.

    Google Scholar 

  • Perera, R.J., Linard, C.G. and Signer, E.R. (1993) Cytosine deaminase as a negative selective marker forArabidopsis.Pl. Mol. Biol. 23, 793–9.

    Article  Google Scholar 

  • Perisic, O., Xiao, H. and Lis, J.T. (1989) Stable binding ofDrosophila heat shock factor to head-to-hed and tail-to-tail repeats of a conserved 5 bp recognition unit.Cell 59 797–806.

    Article  PubMed  Google Scholar 

  • Prändl, R., Kloske, E. and Schöffl, F. (1995) Developmental regulation and tissue-specific differences of heat shock gene expression in transgenic tobacco andArabidopsis plants.Pl. Mol. Biol. (in press).

  • Rabindran, S.K., Giorgi, G., Clos, J. and Wu, C. (1991) Molecular cloning and expression of human heat shock transcription factor, HSF1.Proc. Natl Acad. Sci. USA 88, 6906–10.

    PubMed  Google Scholar 

  • Reiping, M. and Schöffl, F. (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco.Mol. Gen. Gent. 321, 226–32.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular Cloning: a Laboratory Manual (2nd edition). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sarge, K.D., Zimarino, V., Hom, K., Wu, C. and Morimoto, R.I. (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA binding ability.Genes Dev. 5, 1902–11.

    PubMed  Google Scholar 

  • Scharf, K.D., Rose, S., Zott, W., Schöffl, F. and Nover, L. (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF.EMBO J. 9, 4495–501.

    PubMed  Google Scholar 

  • Schöffl, F., Rossol, I. and Angermüller, S. (1987) Regulation of the transcription of heat shock genes in nuclei from soybean (Glycine max) seedlings.Plant, Cell & Environ.10, 113–9.

    Google Scholar 

  • Schöffl, F., Rieping, M., Baumann, G., Bevan, M. and Angermüller, S. (1989) The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco.Mol. Gen. Genet. 217, 246–53.

    PubMed  Google Scholar 

  • Schöffl, F., Rieping, M. and Severin, K. (1991) The induction of the heat shock response: Activation and expression of chimaeric heat shock genes in transgenic plants. In Hermann R.G. and Larkins B. (eds),Plant Molecular Biology 2, NATO-ASI Series, pp. 685–694. New York: Plenum Publ. Corp.

    Google Scholar 

  • Schöffl, F., Diedring, V., Kliem, M., Rieping, M., Schröder, G. and Severin, K. (1992) The heat shock response in transgenic plants: the use of chimaeric heat shock genes. In Wray, J.L., ed., Inducible Plant Proteins: Their Biochemistry and Molecular Biology, pp. 267–288. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schöffl, F., Schröder, G., Kliem, M. and Rieping, M. (1993) A SAR sequence containing 395 bp fragment mediates enhanced, gene dosage-correlated expression of chimaeric heat shock gene in transgenic tobacco plants.Transgenic Res. 2, 20–7.

    Google Scholar 

  • Schuetz, T.J., Gallo, G.J., Sheldon, I., Tempst, P. and Kingston, R.E. (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in human.Proc. Natl Acad. Sci. USA 88, 6910–5.

    Google Scholar 

  • Severin, K. and Schöffl, F. (1990) Heat-inducible hygromycin resistance in transgenic tobacco.Pl. Mol. Biol. 15, 827–33.

    Article  Google Scholar 

  • Sorger, P.K. and Nelson, H.C.M. (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif.Cell 59, 807–13.

    Article  PubMed  Google Scholar 

  • Stougaard, J. (1993) Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene.Pl. J. 3, 755–61.

    Article  Google Scholar 

  • Takahashi, T., Naito, S. and Komeda, Y. (1992) TheArabidopsis HSP18.2 promoter/GUS gene fusion in transgenicArabidopsis plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response.Plant J. 2, 751–61.

    Google Scholar 

  • Trewavas, A. and Gilroy, S. (1991) Signal transduction in plant cells.Trends Genet. 7, 356–61.

    PubMed  Google Scholar 

  • Valvekens, D., Van Montagu, M. and Van Lijsebettens, M. (1988) Argrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection.Proc. Natl Acad. Sci. USA 85, 5536–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severin, K., Wagner, A. & Schöffl, F. A heat-inducibleAdh gene as a reporter gene for a negative selection in transgenicArabidopsis . Transgenic Research 4, 163–172 (1995). https://doi.org/10.1007/BF01968781

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01968781

Keywords

Navigation