Effect of free or liposome-encapsulated muramyl dipeptide on uptake and intracellular survival ofListeria monocytogenes in mouse peritoneal macrophages in vitro

  • I. A. J. Bakker-Woudenberg
  • A. F. Lokerse
  • J. C. Vink-van den Berg
  • F. H. Roerdink
Article

Abstract

The effect of free versus liposome-encapsulated muramyl dipeptide (MDP) on the uptake and intracellular survival ofListeria monocytogenes in mouse peritoneal macrophages in vitro was investigated. Macrophages in monolayer culture were exposed to free MDP at various concentrations during different time periods before incubation withListeria monocytogenes. An increase in bacterial uptake dependent on the concentration of MDP and the length of exposure was observed. Exposure of macrophages to 200µg of free MDP per milliliter for 15 h led to a threefold increase in bacterial uptake, resulting in an average of 15 bacteria per macrophage after 30 min of incubation. In addition, intracellular bacteria were killed in the MDP-exposed macrophages, in contrast to the intracellular multiplication ofListeria monocytogenes in macrophages not exposed to MDP. Encapsulation of MDP within liposomes resulted in a significant enhancement of its activity: liposomal encapsulation led to a 1,000-fold reduction in the amount of MDP required to obtain these effects on bacterial uptake and intracellular killing, whereas empty liposomes had no effect at all. Liposomal encapsulation may be an appropriate means of increasing delivery of the muramyl peptides to the macrophages.

Keywords

Peptide Internal Medicine Dipeptide Significant Enhancement Peritoneal Macrophage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drews, J. The experimental and clinical use of immune-modulating drugs in the prophylaxis and treatment of infections. Infection 1984, 12: 157–166.PubMedGoogle Scholar
  2. 2.
    O'Grady, F. The second L. P. Garrod Lecture. Strategies for potentiating chemotherapy in severe sepsis: some experimental pointers. Journal of Antimicrobial Chemotherapy 1984, 13: 535–546.PubMedGoogle Scholar
  3. 3.
    Audibert, F., Leclerc, C., Chedid, L. Muramyl peptides as immunopharmacological response modifiers. In: Torrence, P. F. (ed.): Biological response modifiers. Academic Press, New York, 1985, p. 307–327.Google Scholar
  4. 4.
    Chedid, L. Muramyl peptides as possible endogenous immunopharmacological mediators. Microbiology and Immunology 1983, 27: 723–732.PubMedGoogle Scholar
  5. 5.
    Leclerc, C., Chedid, L. Macrophage activation by synthetic muramyl peptides. In: Pick, E. (ed.): Lymphokines 7. Academic Press, New York, 1982, p. 1–21.Google Scholar
  6. 6.
    Fogler, W. E., Fidler, I. J. Modulation of the immune response by muramyl dipeptide. In: Fenichel, R. L., Chirigos, M. A. (ed.): Immune modulation agents and their mechanisms. Marcel Dekker, New York, 1984, p. 499–512.Google Scholar
  7. 7.
    Kotani, S., Takada, H., Tsujimoto, M., Kubo, T., Ogawa, T., Azuma, I., Ogawa, H., Matsumoto, K., Siddiqui, W. A., Tanaka, A., Nagao, S., Kohashi, O., Kanoh, S., Shiba, T., Kusumoto, S. Nonspecific and antigen-specific stimulation of host defence mechanisms by lipophilic derivatives of muramyl dipeptides. In: Jeljazewicz, J., Pulverer, G., Roszkowski, W. (ed.): Bacteria and cancer. Academic Press, London, 1982, p. 67–113.Google Scholar
  8. 8.
    Matsumoto, K., Otani, T., Une, T., Osada, Y., Ogawa, H., Azuma, I. Stimulation of nonspecific resistance to infection induced by muramyl dipeptide analogs substituted in the γ-carboxyl group and evaluation of Nα-muramyl dipeptide-N-ε stearollysine. Infection and Immunity 1983, 39: 1029–1040.PubMedGoogle Scholar
  9. 9.
    Parant, M., Chedid, L. Stimulation of non-specific resistance to infections by synthetic immunoregulatory agents. Infection 1985, 13, Supplement 2: 251–255.PubMedGoogle Scholar
  10. 10.
    Finger, H., Wirsing von König, C.-H. Failure of synthetic muramyl dipeptide to increase antibacterial resistance. Infection and Immunity 1980, 27: 288–291.PubMedGoogle Scholar
  11. 11.
    Fraser-Smith, E. B., Matthews, T. R. Protective effect of muramyl dipeptide analogs against infections ofPseudomonas aeruginosa orCandida albicans in mice. Infection and Immunity 1981, 34: 676–683.PubMedGoogle Scholar
  12. 12.
    Humphres, R. C., Henika, P. R., Ferraresi, R. W., Krahenbuhl, J. L. Effects of treatment with muramyl dipeptide and certain of its analogs on resistance toListeria monocytogenes in mice. Infection and Immunity 1980, 30: 462–466.PubMedGoogle Scholar
  13. 13.
    Osada, Y., Mitsuyama, M., Une, T., Matsumoto, K., Otani, T., Satoh, M., Ogawa, H., Nomoto, K. Effect of L18-MDP (Ala), a synthetic derivative of muramyl dipeptide, on nonspecific resistance of mice to microbial infections. Infection and Immunity 1982, 37: 292–300.PubMedGoogle Scholar
  14. 14.
    Scherphof, G. L., Dijkstra, J., Spanjer, H. H., Derksen, J. T. P., Roerdink, F. H. Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Annals of the New York Academy of Sciences 1985, 446: 368–384.PubMedGoogle Scholar
  15. 15.
    Bakker-Woudenberg, I. A. J. M., Lokerse, A. F., Roerdink, F. H., Regts, D., Michel, M. F. Free versus liposome-entrapped ampicillin in treatment of infection due toListeria monocytogenes in normal and athymic (nude) mice. Journal of Infectious Diseases 1985, 151: 917–924.PubMedGoogle Scholar
  16. 16.
    Bakker-Woudenberg, I. A. J. M., Lokerse, A. F., Vink-van den Berg, J. C., Roerdink, F. H., Michel, M. F. Effect of liposome-entrapped ampicillin on survival ofListeria monocytogenes in murine peritoneal macrophages. Antimicrobial Agents and Chemotherapy 1986, 30: 295–300.PubMedGoogle Scholar
  17. 17.
    Hadden, J. W., Englard, A., Sadlik, J. R., Hadden, E. M. The comparative effects of isoprinosine, levamisole, muramyl dipeptide and SM1213 on lymphocyte and macrophage proliferation and activation in vitro. International Journal of Immunopharmacology 1979, 1: 17–27.PubMedGoogle Scholar
  18. 18.
    Lopez-Berestein, G., Mehta, K., Mehta, R., Juliano, R. L., Hersh, E. M. The activation of human monocytes by liposome-encapsulated muramyl dipeptide analogues. Journal of Immunology 1983, 130: 1500–1502.Google Scholar
  19. 19.
    Mehta, K., Juliano, R. L., Lopez-Berestein, G. Stimulation of macrophage protease secretion via liposomal delivery of muramyl dipeptide derivatives to intracellular sites. Immunology 1984, 51: 517–527.PubMedGoogle Scholar
  20. 20.
    Daemen, T., Veninga, A., Roerdink, F. H., Scherphof, G. L. In vitro activation of rat liver macrophages to tumoricidal activity by free or liposome-encapsulated muramyl dipeptide. Cancer Research 1986, 46: 4330–4335.PubMedGoogle Scholar
  21. 21.
    Fidler, I. J., Fogler, W. E., Kleinerman, E. S., Saiki, I. Abgrogation of species specificity for activation of tumoricidal properties in macrophages by recombinant mouse or human interferon-γ encapsulated in liposomes. Journal of Immunology 1985, 135: 4289–4296.Google Scholar
  22. 22.
    Sone, S., Utsugi, T., Tandon, P., Ogawara, M. A dried preparation of liposomes containing muramyl tripeptide phosphatidylethanolamine as a potent activator of human blood monocytes to the antitumor state. Cancer Immunology and Immunotherapy 1986, 22: 191–196.PubMedGoogle Scholar
  23. 23.
    Phillips, N. C., Rioux, J., Tsao, M. S. Activation of murine Kuppfer cell tumoricidal activity by liposomes containing lipophilic muramyl dipeptide. Hepatology 1988, 8: 1046–1050.PubMedGoogle Scholar
  24. 24.
    Eppstein, D. A., Van der Pas, M. A., Fraser-Smith, E. B., Kurahara, C. G., Felgner, P. L., Matthews, T. R., Waters, R. V., Venuti, M. C., Jones, G. H., Mehta, R., Lopez-Berestein, G. Liposome-encapsulated muramyl dipeptide analogue enhances non-specific host immunity. International Journal of Immunotherapy 1986, 11: 115–126.Google Scholar
  25. 25.
    Phillips, N. C., Tsao, M. S. Inhibition of experimental liver tumor growth in mice by liposomes containing a lipophilic muramyl dipeptide derivative. Cancer Research 1989, 49: 936–939.PubMedGoogle Scholar
  26. 26.
    Fraser-Smith, E. B., Eppstein, D. A., Larsen, M. A., Matthews, T. R. Protective effect of a muramyl dipeptide analog encapsulated in or mixed with liposomes againstCandida albicans infections. Infection and Immunity 1983, 39: 172–178.PubMedGoogle Scholar
  27. 27.
    Mehta, R. T., Lopez-Berestein, G., Hopfer, R. L., Mehta, K., White, R. A., Juliano, R. L. Prophylaxis of murine candidiasis via application of liposome-encapsulated amphotericin B and a muramyl dipeptide analog, alone and in combination. Antimicrobial Agents and Chemotherapy 1985, 28: 511–513.PubMedGoogle Scholar
  28. 28.
    Phillips, N. C., Chedid, L. Anti-infectious activity of liposomal muramyl dipeptides in immunodeficient CBA/N mice. Infection and Immunity 1985, 55: 1426–1430.Google Scholar
  29. 29.
    Gangemi, J. D., Nachtigal, M., Barnhart, D., Krech, L., Jani, P. Therapeutic efficacy of liposome-encapsulated ribavirin and muramyl tripeptide in experimental infection with influenza or herpes simplex virus. Journal of Infectious Diseases 1987, 155: 510–517.PubMedGoogle Scholar
  30. 30.
    Koff, W. C., Showalter, S. D., Hampar, B., Fidler, I. J. Protection of mice against fatal herpes simplex type 2 infection by liposomes containing muramyl tripeptide. Science 1985, 228: 495–496.PubMedGoogle Scholar
  31. 31.
    Koff, W. C., Fidler, I. J. The potential use of liposome-mediated antiviral therapy. Antiviral Research 1985, 5: 179–190.PubMedGoogle Scholar
  32. 32.
    Fogler, W. E., Wade, R., Brundish, D. E., Fidler, I. J. Distribution and fate of free and liposome-encapsulated [3H] Nor-muramyl dipeptide and [3H]Muramyl tripeptide phosphatidylethanolamine in mice. Journal of Immunology 1985, 135: 1372–1377.Google Scholar
  33. 33.
    Parant, M. Host resistance against bacterial infections. Immunomodulation by antimicrobials and synthetic immunoenhancers. In: Escobar, M. R., Utz, J. P. (ed.): The reticuloendothelial system. A comprehensive treatise. Volume 10. Plenum Press, New York, 1988, p. 85–107.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1989

Authors and Affiliations

  • I. A. J. Bakker-Woudenberg
    • 1
  • A. F. Lokerse
    • 1
  • J. C. Vink-van den Berg
    • 1
  • F. H. Roerdink
    • 2
  1. 1.Department of Clinical Microbiology and Antimicrobial TherapyErasmus University RotterdamRotterdamthe Netherlands
  2. 2.Laboratory of Physiological ChemistryUniversity of GroningenGroningenthe Netherlands

Personalised recommendations