Agents and Actions

, Volume 11, Issue 3, pp 296–305 | Cite as

Metal binding by pharmaceuticals. Part 1. Copper(II) and zinc(II) interactions following ethambutol administration

  • Alun Cole
  • Peter M. May
  • David R. Williams
Bioinorganic Interactions


Formation constants for copper(II) and zinc(II) complexes of dextro-2,2′-(ethylenediimino)-di-1-butanol (ethambutol) and its metabolic oxidation product, 2,2′-(ethylenediimino)-dibutyric acid (EDBA) have been measured potentiometrically at 37°C, I=0.15 mol dm−3 [NaCl]. The constants are used in computer models to assess the extent of the formation of these complexes in vivo. These simulations indicate that whereas ethambutol forms metal complexes only to a limited extent in vivo, EDBA competes effectively under physiological conditions for copper(II) and zinc(II). This study suggests that zinc(II) binding by EDBA may account for a number of side effects of ethambutol treatment.


Copper Zinc Physiological Condition Computer Model Metal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Albert,Selective Toxicity (Chapman and Hall, London 1973).Google Scholar
  2. [2]
    W.O. Foye, W.E. Lange, J.V. Swintosky, R.E. Chamberlain andJ.R. Guaini,Metal Chelates of Streptomycin, J. Pharm. Sci.44, 261–263 (1955).Google Scholar
  3. [3]
    W.O. Foye andR.N. Duvall,Metal Chelates and Antitubercular Activity III: p-Aminosalicylic Acid, Chelate vs. Complex. J. Pharm. Sci.47, 282–285 (1958).Google Scholar
  4. [4]
    W.O. Foye andR.N. Duvall,Metal Chelates and Antitubercular Activity IV: Isonicotinyl Hydrazide, J. Pharm. Sci.47, 285–288 (1958).Google Scholar
  5. [5]
    V.K. Leibermeister,Zum Wirkungsprinzip Schwefelhaltiger Tuberkulostatisches Chemotherapeutica, Z. Naturf.56, 79–86 (1950).Google Scholar
  6. [6]
    K. Wagano, H. Kinoshita andZ. Tamura,Metal Complexes of Isonicotinoylhydrazide and Related Compounds III. Consecutive Formation Constants for Various Metal Ions by the pH Titration Method, Chem. pharm. Bull., Tokyo11 (8), 999–1013 (1963).Google Scholar
  7. [7]
    J.R. Mayer, J.F. Speyer andM. Levine,Mode of Action of Isoniazid, Am. Rev. Tuberc.75, 517–518 (1957).Google Scholar
  8. [8]
    R.G. Wilkinson, R.G. Shepherd, J.P., Thomas andC. Baughn,Stereospecificity in a New Type of Synthetic Antituberculous Agent, J. Am. chem. Soc.83, 2212–2213 (1961).Google Scholar
  9. [9]
    K.M. Citron,Tuberculosis — Chemotherapy, Br. med. J. Feb.12, 426–427 (1972).Google Scholar
  10. [10]
    R.G. Wilkinson, M.B. Cantrall andR.G. Shepherd,Antituberculous Agents III, (+)-2,2′-(ethylenediimino)-di-1-butanol and Some Analogues, J. med. pharm. Chem.5, 823–825 (1962).Google Scholar
  11. [11]
    J. Bacalao andM. Riebes,Ethambutol-Mediated Alterations in Ribonucleic Acid Components of Mycobacterium smegmatis, J. Bact.112, 1004–1006 (1972).PubMedGoogle Scholar
  12. [12]
    G.P. Gale andH. McLain,Effect of Ethambutol on Cytology of Mycobacterium smegmatis, J. Bact.86, 749–756 (1963).PubMedGoogle Scholar
  13. [13]
    M. Forbes, N.A. Kuck andE.A. Peets,Effect of Ethambutol on Nucleic Acid Metabolism in Mycobacterium smegmatis and its Reversal by Polyamines and Divalent Cations, J. Bact.89, 1299–1305 (1965).PubMedGoogle Scholar
  14. [14]
    G. Bemski, M. Rieber andH. Reyes,Ethambutol-Mediated Alterations of the ESR of Cu(II)-Polynucleotides Complexes, FEBS Letters23, 59–61 (1972).PubMedGoogle Scholar
  15. [15]
    V.A. Place, E.A. Peets, D.A. Buyske andR.R. Little,Metabolic and Special Studies of Ethambutol in Normal Volunteers and Tuberculous Patients, Ann. N.Y. Acad. Sci.135, 775–795 (1966).PubMedGoogle Scholar
  16. [16]
    J.E. Liebold,The Ocular Toxicity of Ethambutol and its Relation to Dose, Ann. N.Y. Acad. Sci.135, 904–909 (1966).PubMedGoogle Scholar
  17. [17]
    P.M. May, P.W. Linder andD.R. Williams,Computer Simulation of Metal-Ion Equilibria in Biofluids: Models for the Low-molecular-weight Complex Distribution of Calcium(II), Magnesium(II), Manganese(II), Iron(III), Copper(II), Zinc(II), and Lead(II) Ions in Human Blood Plasma, J. Chem. Soc. Dalton 588–595 (1977).Google Scholar
  18. [18]
    E.A. Peets, W.M. Sweeny, V.A. Place andD.A. Buyske,The Absorption, Excretion and Metabolic Fate of Ethambutol in Man, Am. Rev. resp. Dis.91, 51–58 (1965).PubMedGoogle Scholar
  19. [19]
    G. Berthon, P.M. May andD.R. Williams,Computer Simulation of Metal-Ion Equilibria in Biofluids Part 2. Formation Constants for Zinc(II)-Citrate-Cysteinate Binary and Ternary Complexes and Improved Models of Low-molecular-weight Zinc Species in Blood Plasma, J. Chem. Soc. Dalton 1433–1438 (1978).Google Scholar
  20. [20]
    A.I. Vogel,A Textbook of Quantitative Inorganic Analysis (Longman Group, Ltd 1961).Google Scholar
  21. [21]
    D. Dyrssen, D. Jagner andF. Wengelin,Computer Calculations of Ionic Equilibria and Titration Procedures (Wiley, London 1968), p. 204.Google Scholar
  22. [22]
    A.M. Corrie, M.D. Walker andD.R. Williams,Thermodynamic Considerations in Coordination. Part XXII. Sequestering Ligands for Improving the Treatment of Plumbism and Cadmiumism, J. Chem. Soc. Dalton 1012–1019 (1976).Google Scholar
  23. [23]
    A. Sabatini, A. Vacca andP. Gans,MINIQUADA General Computer Program for the Computation of Formation Constants from Potentiometric Data, Talanta21, 53–77 (1974).Google Scholar
  24. [24]
    I.G. Sayce,Computer Calculation of Equilibrium Constants of Species Present in Mixtures of Metal Ions and Complexing Agents, Talanta15, 1397–1411 (1968).Google Scholar
  25. [25]
    A.M. Corrie, G.K.R. Markar, M.L.D. Touche andD.R. Williams,Thermodynamic Considerations in Coordination. Part XX. A Computerised Approach as an Alternative to Graphical Normalised Curve Fitting as a Means of Detecting Oligonuclear Complexes in Metal Ion-Ligand Solutions and its Application to the Zinc(II)-, Lead(II)-, and Proton-Glycine Peptide Systems, J. Chem. Soc. Dalton 105–110 (1975).Google Scholar
  26. [26]
    D.D. Perrin andI.G. Sayce,Computer Calculation of Equilibrium Concentrations in Mixtures of Metal Ions and Complexing Species, Talanta14, 833–842 (1967).Google Scholar
  27. [27]
    D.D. Perrin andV.S. Sharma,Histidine Complexes with some Bivalent Cations, J. chem. Soc. (A) 724–728 (1967).Google Scholar
  28. [28]
    W.H. Beggs andF.A. Andrews,Chemical Characterization of Ethambutol Binding to Mycobacterium smegmatis, Antimicrob. Agents Chemother.5, 234–239 (1974).PubMedGoogle Scholar
  29. [29]
    H. Irving, R. Shelton andR. Evans,Steric Hindrance in Analytical Chemistry. Part IV. Some Sterically Hindered Complexones, J. chem. Soc. Pt. 3, 3540–3549 (1958).Google Scholar
  30. [30]
    S. Chaberek, Jr. andA.E. Martell,Stability of Metal Chelates IV. N,N'-Ethylenediaminediacetic Acid and N,N'-Ethylenediaminodiacetic-N,N'-dipropionic Acid, J. Am. chem. Soc.74, 6228–6231 (1952).Google Scholar
  31. [31]
    C.J. Hawkins,Circular Dichroism and Chelation: Complexes of N,N'-bis(2-butan-1-ol)-ethylenediamine, Acta chem. scand.18, 1564–1566 (1964).Google Scholar
  32. [32]
    A. Cole (unpublished results).Google Scholar
  33. [33]
    D.D. Perrin, I.G. Sayce andV.S. Sharma,Mixed Ligand Complex Formation by Copper (II) Ion, J. chem. Soc. (A), 1755–1759 (1967).Google Scholar
  34. [34]
    D.D. Perrin andR.P. Agarwal,Metal Ions in Biological Systems, vol. 2 (Ed. H. Sigel; Marcel Dekker, 1973), pp. 195–196.Google Scholar
  35. [35]
    D.A. Buyske, W. Sterling andE. Peets,Pharmacological and Biochemical Studies on Ethambutol in Laboratory Animals, Ann. N.Y. Acad. Sci.135, 711–725 (1966).PubMedGoogle Scholar
  36. [36]
    M.C. Lun Duc andMlle J. Alary,Variation in the Level of Some Trace Elements during Treatment of Tuberculosis with Ethambutol, Bull Trav. Soc. Pharm. Lyon17 (1), 27–37 (1973).Google Scholar
  37. [37]
    R. Figueroa, H. Weiss, J.C. Smith, Jr., B.M. Hackley, L.D. McBean, C.R. Swassing andJ.A. Halsted,Effect of Ethambutol on the Ocular Zinc Concentration in Dogs, Am. Rev. resp. Dis.104, 692–694 (1971).Google Scholar
  38. [38]
    A.W. Vogel andJ.A. Kaiser,Ethambutol-Induced Transient Change and Reconstitution (in vivo) of the Tapetum Lucidum Color in the Dog, Exp. Molec. Path. (Supplement)2, 136–149 (1963).Google Scholar
  39. [39]
    K.M. Citron,Ethambutol: A Review with Special Reference to Ocular Toxicity, Tubercle (Supplement),50, 32–36 (1969).PubMedGoogle Scholar
  40. [40]
    P.M. May andD.R. Williams,Computer Simulation of Chelation Therapy. Plasma Mobilizing Index as a Replacement for Effective Stability Constants, FEBS Letters78, 134–139 (1977).PubMedGoogle Scholar
  41. [41]
    M.A. Galin, H.D. Nano andT. Hall,Ocular Zinc Concentration, Invest. Ophthal.1, 142–148 (1962).PubMedGoogle Scholar
  42. [42]
    S.M. Roberts,A Review of the Papers on the Ocular Toxicity of Ethambutol Hydrochloride Myambutol an Antituberculosis Drug, Am. J. Optom. Physiol. Opt.51, 987–992 (1974).PubMedGoogle Scholar
  43. [43]
    E.A. Peets andD.A. Buyske,Comparative Metabolism of Ethambutol and its l -Isomer, Biochem. Pharmac.13, 1403–1419 (1964).Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • Alun Cole
    • 1
  • Peter M. May
    • 1
  • David R. Williams
    • 1
  1. 1.Department of ChemistryUniversity of Wales Institute of Science and TechnologyCardiffWales UK

Personalised recommendations