Skip to main content
Log in

Bacteriolysis is inhibited by hydrogen peroxide and by proteases

  • Inflammation and Immunomodulation
  • Meeting Report
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

Treatment ofStaphylococcus aureus in vitro with cationic agents results in the activation of their autolytic wall enzymes and in the degradation of their cell walls. Exposure of staphylococci either to hydrogen peroxide or the proteinases abolished the autolytic process. This effect was totally reversed by catalase and by proteinase inhibitors, respectively. It is suggested that the failure of neutrophils and macrophages to effectively degrade microbial cell wall components in inflammatory sites might be due to the inactivation of the autolytic wall enzymes of bacteria by hydrogen peroxide and by proteinases generated by the activated leukocytes. This might explain the prolonged chronic inflammatory sequelae seen following infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. P. Klebanoff and R. A. Clark,The Neutrophil, Function and Clinical Disorders. Elsevier, New York 1978.

    Google Scholar 

  2. P. Elsbach,Degradation of microorganisms by phagocytic cells. Rev. Infect. Dis.2, 106–128 (1980).

    PubMed  Google Scholar 

  3. P. Elsbach, J. Weiss,A reevaluation of the roles of 02-dependent and 02-independent microbicidal systems of phagocytes. Rev. Infect. Dis.5, 843–853 (1983).

    PubMed  Google Scholar 

  4. J. K. Spitznagel and W. M. Shafer,Neutrophil killing of bacteria by oxygen-independent mechanisms: A historical summary. Rev. Infect. Dis.7, 398–403 (1985).

    PubMed  Google Scholar 

  5. M. Lahav, N. Ne'eman, E. Adler and I. Ginsburg,The effect of leukocyte hydrolases on bacteria. I. Degradation of 14 C labeled streptococci and staphylococci by leukocyte lysates in vitro. J. Infect. Dis.129, 528–537 (1974).

    PubMed  Google Scholar 

  6. H. L. Rogers, H. R. Perkins and J. B. Ward,Microbial cell walls and membranes. London, Chapman & Hall 1980.

    Google Scholar 

  7. M. Lahav and I. Ginsburg,Effect of leukocyte hydrolases on bacteria. X. The role played by leukocyte factors, cationic polyelectrolytes, and by membrane-damaging agents in the lysis on Staphylococcus aureus: relation to chronic inflammatory processes. Inflammation2, 165–177 (1977).

    PubMed  Google Scholar 

  8. I. Ginsburg, M. Lahav and P. Giesbrecht,Effect of leukocyte hydrolases on bacteria. XVI. Activation by leukocyte factors and cationic substances of autolytic wall enzymes in Staphylococcus aureus: Modulation by anionic polyelectrolytes in relation to the survival of bacteria in inflammatory exudates. Inflammation6, 401–417 (1982).

    Google Scholar 

  9. I. Ginsburg,How are cell wall components of pathogenic microorganisms degraded in infectious and inflammatory sites? Facts and myths. InBiological Properties of Bacterial Peptidoglycans. (Eds P. H. Seidl and K. H. Schleifer) pp 167–185 Walter de Gruyter, Berlin, New York 1986.

    Google Scholar 

  10. N. J. Laible and G. R. Germaine,Bactericidal activity of human lysozyme muramidase-inactive lysozyme, cationic polypeptides against Steptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect. Immun45, 720–728 (1985).

    Google Scholar 

  11. J. H. Schwab and S. H. Ohanian,Degradation of streptococcal cell wall antigens in vivo. J. Bact.94, 1346–1352 (1967).

    PubMed  Google Scholar 

  12. I. Ginsburg,Mechanisms of cell and tissue injury induced by group A streptococci: relation to poststreptococcal sequelae. J. Infect. Dis.126, 294–340, 419–456 (1972).

    PubMed  Google Scholar 

  13. I. Ginsburg, U. Zor and Y. Floman,Experimental models of streptococcal arthritis: pathogenetic role of streptococcal products and prostaglandins and their modification by antiinflammatory agents. Bayer-symposium VI. Experimental models of chronic inflammatory diseases. In (Eds L. E. Glynn and H. D. Schlumberger) pp. 256–299 Berlin, Springer-Verlag 1977.

    Google Scholar 

  14. I. Ginsburg, S. Mitrani, N. Ne'eman and M. Lahav,Granulomata in streptococcal inflammation: mechanisms of localization transport and degradation of streptococci in inflammatory sites. InMononuclear Phagocytes in Immunity, Infection and Pathology. (Ed. R. Van Furth) pp. 981–1014, Blackwell Scientific Publications Oxford, London 1975.

    Google Scholar 

  15. I. Ginnsburg, M. Lahav, J. Goultchin, M. Sadovnik, E. Kwa, J. Wecke and P. Giesbrecht,The interaction of Staphylococcus aureus with leukocytes in joint lesions: An ultrastructural study. InThe Staphylococci. (ed. J. Jeljaszewicz) pp. 691–698, Gustav Fischer Verlag, Stuttgart, New York 1985.

    Google Scholar 

  16. J. Wecke, M. Lahav, I. Ginsburg, E. Kwa and P. Giesbrecht,Inhibition of wall autolysis of staphylococci by sodium polyanethole sulfonate. Arch. Microbiol.144, 110–115 (1986).

    PubMed  Google Scholar 

  17. D. G. Wickens and T. L. Dormandy,Effect of free-radical activity on human gamma globulin. Agents and Actions15, 47–48 (1984).

    Google Scholar 

  18. J. C. Monboisse, P. Braquet and J. P. Borel,Oxygen-free radicals as mediators of collagen break. Agents and Actions15, 49–50 (1984).

    Google Scholar 

  19. S. E. G. Fligiel, C. L. Euisung, J. P. McCoy, K. J. Johnson and J. Varani,Protein degradation following treatment with hydrogen peroxide. Amer. J. Pathol.115, 418–425 (1983).

    Google Scholar 

  20. S. P. Wolf, A. Gardner and R. T. Dean,Free radicals, lipids and protein degradation. Trends in Biochem. Sciences11, 27–31 (1986).

    Google Scholar 

  21. J. Weiss, L. Kao, M. Victor and P. Elsbach,Respiratory burst facilitates the digestion of Eschericia coli killed by polymorphonuclear leukocytes. Infect. Immun.55, 2142–2147 (1987).

    PubMed  Google Scholar 

  22. T. Wadstrom and O. Vesterberg,Studies on endo- N-acetylglucosaminidase staphylolytic peptidase and N-acetylmuramyl-l-alanine amidase in lysostaphin and from Staphylococcus aureus. Acta Path. Mic. Scand. Section B79, 248–264 (1971).

    Google Scholar 

  23. M. J. Janusz, C. Chetty, R. A. Eisenber, W. J. Cromartie and J. H. Schwab,Treatment of experimental erosive arthritis in rats by injection of muralytic enzyme mutanolysin. J. Exp. Med.160, 1360–1374 (1984).

    PubMed  Google Scholar 

  24. H. L. Rogers, H. R. Perkins and J. B. Ward,The bacterial autolysins. InMicrobial Cell Walls and Membranes, p. 437, Chapman & Hall, London 1980.

    Google Scholar 

  25. J. Schalkwijk, W. B. Van Den Berg, L. B. A. Van De Putte, L. A. B. Joosten and L. Van Den Bersselaar,Cationization of catalase, peroxidase and superoxide dismutase. Effect of improved intraarticular retention on experimental arthritis in mice. J. Clin. Invest.76, 198–205 (1985).

    PubMed  Google Scholar 

  26. J. S. Warren, P. A. Ward, K. J. Johnson and I. Ginsburg,Modulation of acute immune complex-mediated tissue injury by the presence of polyionic substances. Amer. J. Pathol.128, 67–77 (1987).

    Google Scholar 

  27. I. Ginsburg,The biochemistry of Bacteriolysis: Paradoxes, facts and myths. Mic. Sci.5, 137–142 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a research grant from Dr. SM. Robbins, Cleveland, Ohio, by grants HL-28442-07, HL-31963 and GM-29507 from the National Institutes of Health, Bethesda, MD, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginsburg, I. Bacteriolysis is inhibited by hydrogen peroxide and by proteases. Agents and Actions 28, 238–242 (1989). https://doi.org/10.1007/BF01967409

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01967409

Keywords

Navigation