Agents and Actions

, Volume 15, Issue 5–6, pp 513–519 | Cite as

The role of copper in inflammatory disorders

  • Alan J. Lewis
Immunosuppression and Inflammation Editorial


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.W. Whitehouse,Ambivalent role of copper in inflammatory disorders, Agents and Actions6, 201–216 (1976).PubMedGoogle Scholar
  2. [2]
    S. Van Ravesteijn,Over de koperstofwisseling by den mensch en over het kopergehalte van het bloed by normale en zieke personen. M.D. Thesis from Utrecht, P. Den Boer (1945).Google Scholar
  3. [3]
    J.R.J. Sorenson andW. Hangarter,Treatment of rheumatoid and degenerative disease with copper complexes: a review with emphasis on copper salicylate, Inflammation2, 217–238 (1977).CrossRefPubMedGoogle Scholar
  4. [4]
    I.L. Bonta,Microvascular lesions as a target of anti-inflammatory and certain other drugs, Acta physiol. pharmac. néerl.15, 188–222 (1969).Google Scholar
  5. [5]
    J.R.J. Sorenson,Copper chelates as possible active forms of antiarthritic agents, J. med. Chem.19, 135–148 (1976).CrossRefPubMedGoogle Scholar
  6. [6]
    J.R.J. Sorenson,Copper complexes, a unique class of anti-arthritic drugs, Prog. med. Chem.15, 211–260 (1978).PubMedGoogle Scholar
  7. [7]
    R. Milanino, E. Passarella andG.P. Velo, Copper and the inflammatory process. InAdvances in Inflammation Research, Vol. 2, pp. 281–291 (Eds.G. Weissman, B. Samuelsson andR. Paoletti). Raven Press, New York 1979.Google Scholar
  8. [8]
    I.L. Bonta, M.J. Parnham, J.E. Vincent andP.C. Bragt, Progr. Med. Chem.17, 185–273 (1980).Google Scholar
  9. [9]
    Trace elements in the pathogenesis and treatment of inflammation (Eds.K.D. Rainsford, K. Brune andM.W. Whitehouse) Agents and Actions Suppl. vol. 8. Basel, Birkhäuser Verlag 1981.Google Scholar
  10. [10]
    Inflammatory Diseases and Copper (Ed.J.R.J. Sorenson), Humana Press, Clifton, New Jersey 1982.Google Scholar
  11. [11]
    L.M. Klevay,An appraisal of current human copper nutrition.In ref. 10,, 123–136.Google Scholar
  12. [12]
    G.W. Evans andW.T. Johnson,Copper homeostasis. In ref. 9,. 3–15.Google Scholar
  13. [13]
    D.D. Perrin andM.W. Whitehouse,Metal ion therapy: some fundamental considerations.In ref. 9,. 261–290 (1981).Google Scholar
  14. [14]
    D.R. Williams, C. Furnival andP.M. May,Computer analysis of low molecular weight complexes in biofluids.In ref. 10. 45–49.Google Scholar
  15. [15]
    W. Hangarter,Copper-salicylate in rheumatoid arthritis and similar degenerative diseases.In ref. 10,. 439–452.Google Scholar
  16. [16]
    A.J. Lewis, J. Cottney, J. Teape, J. Dunlop, W.E. Smith andD.H. Brown,Copper and its involvement in the inflammatory process, Eur. J. Rheumatol. Inflamm.1, 295–299 (1978).Google Scholar
  17. [17]
    A.J. Lewis, W.E. Smith andD.H. Brown,A comparison of the anti-inflammatory activities of copper complexes in different models of inflammation.In ref. 9,. 327–328.Google Scholar
  18. [18]
    A.J. Lewis,A comparison of the antiinflammatory effects of copper aspirinate and other copper salts in the rat and guinea pig, Agents and Actions8, 244–250 (1978).Google Scholar
  19. [19]
    K.D. Rainsford,Development and therapeutic actions of oral copper complexes of antiinflamatory drugs.In ref. 10,. 375–390.Google Scholar
  20. [20]
    W.R. Walker, S.J. Beveridge andM.W. Whitehouse,Dermal copper drugs: the copper bracelet and Cu(II) salicylate complexes.In ref.10,. 453–467.Google Scholar
  21. [21]
    B. Wolf,Therapy of inflammatory diseases with superoxide dismutase.In ref. 10,. 453–467.Google Scholar
  22. [22]
    J.M. McCord andI. Fridovitch,The reduction of cytochrome c by milk xanthine oxidase, J. Biol. Chem.243, 5753–5760 (1968).PubMedGoogle Scholar
  23. [23]
    W. Huber, K.B. Menander-Huber, M.G.P. Saifer andP.H.C. Dang, Studies on the clinical and laboratory pharmacology of drug formulations of bovine Cu−Zn superoxide dismutases (Orgotein), InPerspectives in inflammation (Eds.D.A. Willoughby, J.P. Giroud andG.P. Velo), MTP Press, Lancaster, pp. 527–544 (1977).Google Scholar
  24. [24]
    K.D. Rainsford,Reactions of the gastric mucosa to orally administered copper and related metal complexes. In ref. 9,. 369–388.Google Scholar
  25. [25]
    E. Boyle, P.C. Freeman, A.C. Goudie, F.R. Mangan andM. Thompson,The role of copper in preventing gastrointestinal damage by acidic anti-inflammatory drugs, J. Pharm. Pharmac.28, 865–868 (1976).Google Scholar
  26. [26]
    V. Kishore, I.M. Rolniak, K. Ramakrishna andJ.R.J. Sorenson,The antiulcer activities of copper complexes.In ref. 10,. 363–373.Google Scholar
  27. [27]
    P.R. Scudder, D. Al-Timini, W. McMurray, A.G. White, B.C. Zoob andT.L.A. Dormandy,Serum copper and related variables in rheumatoid arthritis, Ann. Rheum. Dis.37, 67–70 (1978).PubMedGoogle Scholar
  28. [28]
    W.E. Smith, D.H. Brown, J. Dunlop, R. Hazelton, R.D. Sturrock andA.J. Lewis, The effect of therapeutic agents on serum copper levels and serum oxidase activities in the rat adjuvant model compared to analogous results from studies of rheumatoid arthritis in humans. InInflammation, Mechanisms and Treatment, pp. 459–466 (Eds.D.A. Willoughby andJ.P. Giroud). MTP Press, London 1980.Google Scholar
  29. [29]
    S.C.R. Meacock, B.P. Swann andW. Dawson,The dynamics and possible role of metal complexes in inflammation.In ref. 9,. 145–164.Google Scholar
  30. [30]
    P.E. Lipsky,Modulation of T-lymphocyte function by copper and thiols.In ref. 9,. 85–102.Google Scholar
  31. [31]
    R.E. Lee andW.E.M. Lands,Cofactors in the biosynthesis of prostaglandins E 1 and F 2, Biochim. biophys. Acta260, 203–211 (1972).PubMedGoogle Scholar
  32. [32]
    J.C. Ludwig andM. Chvapil,Effects of metal ions on lysosomes.In ref.. 9, 65–84.Google Scholar
  33. [33]
    U. Weser andL.M. Schubotz,Catalytic reaction of copper complexes with superoxide.In ref.. 9, 103–120.Google Scholar
  34. [34]
    I. Fridovitch,Superoxide dismutases, Adv. Enzymol.41, 35–97 (1974).PubMedGoogle Scholar
  35. [35]
    W.F. Petrone, D.K. English, K. Wong andJ.M. McCord,Free radicals and inflammation: superoxide-dependent activation of neutrophil chemotactic factor in plasma. Proc. natn. Acad. Sci. USA77, 1159–1163 (1980).Google Scholar
  36. [36]
    T. McP. Brown, J.S. Bailey, I.I. Iden andH.W. Clark. In ref.. 10, 391–407.Google Scholar
  37. [37]
    D.C. Atkinson andR. Hicks,The antiinflammatory activity of irritants, Agents and Actions5, 239–249 (1975).PubMedGoogle Scholar
  38. [38]
    C.W. Denko,Protective role of ceruloplasmin in inflammation, Agents and Actions9, 333–336 (1979).Google Scholar
  39. [39]
    M.J. Laroche, P. Chappuis, Y. Henry andF. Rousselet,Ceruloplasmin: experimental antiinflammatory activity and physicochemical properties.In ref.. 10, 61–74.Google Scholar
  40. [40]
    D.R. Blake, N.D. Hall, D.A. Treby, B. Halliwell andJ.M.C. Gitteridge,Oxygen free-raticals and lipids peroxidation inhibition by the protein ceruloplasmin, FEBS Lett.112, 269–272 (1980).CrossRefGoogle Scholar
  41. [41]
    M.C. Powanda, The role of leukocyte endogenous mediator pyrogen in inflammation.In ref.. 10, 31–43.Google Scholar

Copyright information

© Birkhäuser Verlag 1984

Authors and Affiliations

  • Alan J. Lewis
    • 1
  1. 1.Division of Experimental TherapeuticsWyeth Laboratories IncorporatedPhiladelphia

Personalised recommendations