Advertisement

Experientia

, Volume 39, Issue 5, pp 473–483 | Cite as

Biochemistry of liver development in the perinatal period

  • H. -J. Böhme
  • G. Sparmann
  • E. Hofmann
Article

Summary

Just before birth, changes occur in the metabolic capacities of rat liver so that the animal can adapt to changes in the substrate supply. In utero, glucose is the main energy-generating fuel and the liver metabolism is directed towards glucose degradation. The activities of the rate-limiting enzymes of glycolysis, hexokinase and phosphofructokinase, are high. In preparation for post-natal life, when the continuous glucose supply from the mother is interrupted, very large amounts of glycogen are stored in the late fetal liver. With the intake of the fat-rich and carbohydrate-poor milk diet, the animal develops the ability to synthesize glucose de novo from non-carbohydrate precursors. During suckling, metabolic energy is derived mainly from the β-oxidation of fatty acids, which in turn is an essential prerequisite for the high rate of gluconeogenesis, by yielding acetyl-CoA for the activation of pyruvate carboxylase and by generating a high NADH/NAD ratio for the shift of the glyceraldehyde 3-phosphate dehydrogenase reaction in the direction of glucose formation.-The developmental adaptation of metabolism and the process of enzymatic differentiation are closely connected with the maturation of the endocrine system and the changes in the concentration of circulating hormones. The neonatal regulation of phosphoenolpyruvate carboxykinase and of tyrosine aminotransferase by variations in the hormonal milieu around birth, and also the interacton of hormonal and nutritional factors in the induction of serine dehydratase and glucokinase at the end of the suckling period, will be discussed in detail.

Keywords

Hexokinase Phosphoenolpyruvate Fetal Liver Glyceraldehyde Pyruvate Carboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Widdas, W. F., Br. med. Bull.17 (1961) 107–111.Google Scholar
  2. 2.
    Burd, L. J., Jones, Jr, M. D., Simmons, M. A., Makowski, E. L., Meschia G., and Battaglia, F. C., Nature254 (1975) 710–711.Google Scholar
  3. 3.
    Char, V. C., and Creasy, R. K., Pediat. Res.10 (1971) 231–234.Google Scholar
  4. 4.
    Hommes, F. A., Kraan, G. P. B., and Berger, R., Enzyme15 (1973) 351–360.Google Scholar
  5. 5.
    Kraan, G. P. B., and Dias, T., Biol. Neonate26 (1975) 9–20.Google Scholar
  6. 6.
    Goltzsch, W., Ph.D., Thesis, Karl-Marx-University, Leipzig 1982.Google Scholar
  7. 7.
    Kleiber, M., Physiol. Rev.27 (1947) 511–541.Google Scholar
  8. 8.
    Battaglia, F. C., and Meschia, G., Physiol. Rev.58 (1978) 499–527.Google Scholar
  9. 9.
    Sutton, R., and Pollak, K., Biochem. J.186 (1980) 361–367.Google Scholar
  10. 10.
    Girard, J. R., Cuendet, G. S., Marliss, E. B., Kervran, A., Rieutort, M., and Assan, R., J. clin. Invest.52 (1973) 3190–3200.Google Scholar
  11. 11.
    Tsoulos, N. G., Colwell, J. R., Battaglia, F. C., Makowski, E. L., and Meschia, G., Am. J. Physiol.221 (1971) 234–237.Google Scholar
  12. 12.
    Ballard, F. J., and Oliver, I. T., Biochem. J.90 (1964) 261–269.Google Scholar
  13. 13.
    Bassett, J. M., and Madill, D., J. Endocr.61 (1974) 465–477.Google Scholar
  14. 14.
    Koren, L., and Shafir, E., Proc. Soc. exp. Biol. med.116 (1964) 411–414.Google Scholar
  15. 15.
    James, E., Meschia, G., and Battaglia, F. C., Proc. Soc. exp. Biol. Med.138 (1971) 823–826.Google Scholar
  16. 16.
    Hummel, L., Schwartze, A., Schirrmeister, M., and Wagner, H., Acta biol. med. germ.35 (1976) 1635–1644.Google Scholar
  17. 17.
    Widdowson, E. M., Nature166 (1950) 626–628.Google Scholar
  18. 18.
    Rattray, P. V., Garrett, W. N., East, N. E., and Hinman, N., J. Anim. Sci.38 (1974) 613–629.Google Scholar
  19. 19.
    Argiles, J., and Herrera, E., Biol. Neonate39 (1981) 37–44.Google Scholar
  20. 20.
    Eisenberg, S., Bilheimer, D. W., Levy, R. J., and Lindgreen, F. J., Biochem. biophys. Acta326 (1973) 361–377.Google Scholar
  21. 21.
    Llobera, M., and Herrera, E., Biochem. biophys. Res. Commun.91 (1979) 272–277.Google Scholar
  22. 22.
    Eisenberg, S., and Levy, J., Adv. Lipid Res.13 (1975) 1–89.Google Scholar
  23. 23.
    Secombe, D. W., Harding, P. G. R., and Possmayer, F., Biochim. biphys. Acta488 (1977) 402–416.Google Scholar
  24. 24.
    Roux, J. F., and Myers, R. E., Nature227 (1970) 963.Google Scholar
  25. 25.
    Foster, P. C., and Bailey, E., Biochem. J.154 (1976) 49–56.Google Scholar
  26. 26.
    Popjak, G., Cold Spring Harb. Symp. quant. Biol.19 (1954) 200–208.Google Scholar
  27. 27.
    Remesar, X., Arola, L., Palou, A., and Alemany, M., Archs int. Physiol. Biochem.88 (1980) 443–452.Google Scholar
  28. 28.
    Crumpler, H. R., Dent, C. E., and Lindan, O., Biochem. J.47 (1970) 223–227.Google Scholar
  29. 29.
    Lemons, J. A., Adcock, E. W., Jones, Jr. M. D., Naughton, M. A., Meschia, G., and Battaglia, F. C., J. clin. Invest.58 (1976) 1428–1434.Google Scholar
  30. 30.
    Schneider, H., Challier, J. C., Molhlen, K., and Dancis, J., Pediat. Res.11 (1977) 411.Google Scholar
  31. 31.
    Dirks-Voutling, C., Cone, L., and Wapnir, R. A., Biol. Neonate17 (1971) 361–372.Google Scholar
  32. 32.
    Wapnir, R. A., and Dirks-Voutling, C., Biol. Neonate17 (1971) 373–380.Google Scholar
  33. 33.
    Gresham, E. L., James, E. J., Raye, J. R., Battaglia, F. C., Makowski, E. L., and Meschia, G., Pediatrics50 (1972) 372–379.Google Scholar
  34. 34.
    Gresham, E. L., Simons, P. S., and Battaglia, F. C., J. Pediat.79 (1971) 809–811.Google Scholar
  35. 35.
    Negelein, E., Biochem. Z.165 (1925) 122–132.Google Scholar
  36. 36.
    Bittner, R., Böhme, H.-J., Didt, L., Goltzsch, W., Hofmann, E., Levin, M. J., and Sparmann, G., Adv. Enz. Reg.17 (1978) 37–57.Google Scholar
  37. 37.
    Hatzfeld, A., and Schapira, F., Biochimie55 (1973) 53–57.Google Scholar
  38. 38.
    Saheki, S., Harada, K., Sanno, Y., and Tanaka, T., Biochim. biophys. Acta526 (1978) 116–128.Google Scholar
  39. 39.
    Prior, R. L., Am. J. Physiol.239 (1980) E208-E214.Google Scholar
  40. 40.
    Ballard, F. J., and Hanson, R. W., Biochem. J.104 (1967) 866–871.Google Scholar
  41. 41.
    Philippidis, H., Hanson, R. W., Reshef, L., Hopgood, F., and Ballard, F. J., Biochem. J.126 (1972) 1127–1134.Google Scholar
  42. 42.
    Snell, K., and Walker, D. G., Biochem. J.132 (1973) 739–752.Google Scholar
  43. 43.
    MacDonald, M. J., Kowalchyk, J. A., Ames, L. A., and Bentle, L. A., Biol. Neonate36 (1979) 311–320.Google Scholar
  44. 44.
    Girard, J. R., Ferre, P., Gilbert, M., Kervan, A., Assan, R., and Marliss, E. B., Am. J. Physiol.232 (1977) E456-E463.Google Scholar
  45. 45.
    Yeung, D., Stanley, R. S., and Oliver, I. T., Biochem. J.105 (1967) 1219–1227.Google Scholar
  46. 46.
    Greengard, O., Biochem. J.115 (1969) 19–24.Google Scholar
  47. 47.
    Gilbert, M., Pediat. Res.11 (1977) 95–99.Google Scholar
  48. 48.
    Watts, C., and Gain, K. R., Biochem. J.160 (1976) 263–270.Google Scholar
  49. 49.
    Devos, P., and Hers, H.-G., Biochem. J.140 (1974) 331–340.Google Scholar
  50. 50.
    Watts, C., and Gain, K. R., Biochim. biophys. Acta659 (1981) 23–30.Google Scholar
  51. 51.
    Watts, C., and Mathus, R. S., Eur. J. Biochem.108 (1980) 73–77.Google Scholar
  52. 52.
    Mersmann, H. J., and Segal, H. L., Proc. natl Acad. Sci. USA58 (1967) 1688–1695.Google Scholar
  53. 53.
    Ballard, F. J., and Hanson, R. W., Biochem. J.102 (1967) 952–958.Google Scholar
  54. 54.
    Ballard, F. J., Hanson, R. W., and Kronfeld, D. S., Fedn Proc.28 (1969) 218–231.Google Scholar
  55. 55.
    Iliffe, J., Knight, B. L., and Myant, N. B., Biochem. J.134 (1973) 341–343.Google Scholar
  56. 56.
    Jones, C. T., Biochem. J.156 (1976) 357–365.Google Scholar
  57. 57.
    Lorenzo, M., Caldes, T., Benito, M., and Medina, J. M., Biochem. J.198 (1981) 425–428.Google Scholar
  58. 58.
    Weinhold, P. A., Quache, M. M., Brozowski, T. B., and Feldman, D. A., Biochim. biophys. Acta617 (1980) 76–84.Google Scholar
  59. 59.
    Bailey, K., Hahn, P., and Palaty, V., Can. J. Biochem.54 (1976) 534–538.Google Scholar
  60. 60.
    Rawat, A. K., Biochem. J.174 (1978) 213–219.Google Scholar
  61. 61.
    Pegorier, J. P., Ferre, P., and Girard, J. R., Biochem. J.166 (1977) 631–634.Google Scholar
  62. 62.
    Girard, J. R., Guillet, I., Marty, J., and Marliss, E. B., Am. J. Physiol.229 (1975) 466–474.Google Scholar
  63. 63.
    Hahn, P., and Novak, M., J. Lipid Res.16 (1975) 79–91.Google Scholar
  64. 64.
    Ferre, D., Pegorier, J. P., Williamson, D. H., and Girard, J. R., Biochem. J.182 (1979) 593–598.Google Scholar
  65. 65.
    Melichar, V., Drahota, Z., and Hahn, P., Biol. Neonate8 (1965) 348–352.Google Scholar
  66. 66.
    Callikan, S., Ferre, P., Pegorier, J. P., Marliss, E. B., Assan, R., and Girard, J. R., J. Dev. Physiol.1 (1979) 267–281.Google Scholar
  67. 67.
    Page, M. A., Krebs, H. A., and Williamson, D. H., Biochem. J.121 (1971) 49–53.Google Scholar
  68. 68.
    Varnam, G. C., Jeacock, M. K., and Sheperd, D. A. L., Br. J. Nutr.40 (1978) 359–367.Google Scholar
  69. 69.
    Bengtsson, G., Gentz, J., Hakkarainen, J., Hellstrom, R., and Persson, B., J. Nutr.97 (1969) 311–315.Google Scholar
  70. 70.
    Ferre, P., Pegorier, J. P., Williamson, D. H., and Girard, J. P., Biochem. J.176 (1978) 759–765.Google Scholar
  71. 71.
    Girard, J. R., Ferre, P., El-Manoubi, L., and Pegorier, J. P., Biochem. Soc. Trans.9 (1981) 344–345.Google Scholar
  72. 72.
    Illnerova, H., Biol. Neonate9 (1965) 197–200.Google Scholar
  73. 73.
    Girard, J. R., Ferre, P., Pegorier, J. P., Turlan, P., El-Manoubi, L., and Callikan, S., Biochem. Soc. Trans.9 (1981) 369–370.Google Scholar
  74. 74.
    Snell, K., Biochem. Soc. Trans.9 (1981) 367–368.Google Scholar
  75. 75.
    Yeung, D., and Oliver, I. T., Biochem. J.103 (1967) 744–748.Google Scholar
  76. 76.
    Derr, R. F., and Zieve, L., J. Pharmac. exp. Ther.197 (1976) 675–680.Google Scholar
  77. 77.
    Greengard, O., Pediat. Res.11 (1977) 669–676.Google Scholar
  78. 78.
    Jamdar, S. C., and Greengard, O., J. biol. Chem.245 (1970) 2779–2783.Google Scholar
  79. 79.
    Machovich, R., and Greengard, O., Biochim. biophys. Acta286 (1972) 375–381.Google Scholar
  80. 80.
    Jamdar, S. C., and Greengard, O., Archs Biochem. Biophys.134 (1969) 228–233.Google Scholar
  81. 81.
    Räihä, N. C. R., and Suikkonen, J., Biochem. J.107 (1968) 793–797.Google Scholar
  82. 82.
    Greengard, O., Sahib, M. K., and Knox, W. E., Archs Biochem. Biophys.137 (1970) 477–482.Google Scholar
  83. 83.
    Greengard, O., and Dewey, H. K., J. biol. Chem.242 (1967) 2986–2991.Google Scholar
  84. 84.
    Holt, P. G., and Oliver, I. T., Biochem. J.108 (1968) 333–338.Google Scholar
  85. 85.
    Coufalk, A. H., and Monder, C., Archs Biochem. Biophys.199 (1980) 67–75.Google Scholar
  86. 86.
    Snell, K., and Walker, D. G., Biochem. J.144 (1974) 519–531.Google Scholar
  87. 87.
    Räihä, N. C. R., Koskinen, M., and Pikkarainen, P., Biochem. J.103 (1967) 623–626.Google Scholar
  88. 88.
    Herzfeld, A., Rosenoer, V. M., and Raper, S. M., Pediat. Res.10 (1976) 960–967.Google Scholar
  89. 89.
    Herzfeld, A., and Greengard, O., J. biol. Chem.244 (1969) 4894–4898.Google Scholar
  90. 90.
    Feldman, J. D., Vazquez, J. J., and Kurtz, S. M., Biochem. Cytol.11 (1961) 365–369.Google Scholar
  91. 91.
    DiMarco, P. N., Ghisalberti, A. V., Martin, C. E., and Oliver, I. T., Eur. J. Biochem.87 (1978) 143–247.Google Scholar
  92. 92.
    Greengard, O., and Dewey, H. K., Devl Biol.21 (1970) 452–461.Google Scholar
  93. 93.
    Greengard, O., Science163 (1969) 891–895.Google Scholar
  94. 94.
    Girard, J. R., Bal, D., and Assan, R., Horm. Metab. Res.4 (1972) 168–170.Google Scholar
  95. 95.
    Blazquez, E., Sugase, T., Blazquez, M., and Foa, P., J. Lab. clin. Med.83 (1974) 957–967.Google Scholar
  96. 96.
    Yeung, D., and Oliver, I. T., Biochem. J.108 (1968) 325–331.Google Scholar
  97. 97.
    Girard, J. R., Caquet, D., Bal, D., and Guillet, I., Enzyme15 (1973) 272–285.Google Scholar
  98. 98.
    DiMarco, P. N., and Oliver, I. T., Eur. J. Biochem.87 (1978) 235–241.Google Scholar
  99. 99.
    DiMarco, P. N., and Oliver, I. T., FEBS Lett.94 (1978) 183–186.Google Scholar
  100. 100.
    Bulanyi, G. S., Steele, J. G., McGrath, M. C., Yeoh, G. C. T., and Oliver, I. T., Eur. J. Biochem.102 (1979) 93–100.Google Scholar
  101. 101.
    Yeoh, G. C. T., Arbuckle, T., and Oliver, I. T., Biochem. J.180 (1979) 545–549.Google Scholar
  102. 102.
    Iynedjian, P. B., and Hanson, R. W., J. biol. Chem.252 (1977) 656–662.Google Scholar
  103. 103.
    Mencher, D., Shouval, D., and Reshef, L., Eurl. J. Biochem.102 (1979) 489–495.Google Scholar
  104. 104.
    Cake, M. H., Yeoh, G. C. T., and Oliver, I. T., Biochem. J.198 (1981) 301–307.Google Scholar
  105. 105.
    Greengard, O., Federman, M., and Knox, W. E., J. Cell Biol.52 (1972) 261–272.Google Scholar
  106. 106.
    Greengard, O., and Jamdar, S. C., Biochim. biophys. Acta237 (1971) 476–483.Google Scholar
  107. 107.
    Wakelam, M. J. O., Aragon, C., Gimenez, C., Allen, M. B., and Walker, D. G., Eur. J. Biochem.100 (1979) 467–475.Google Scholar
  108. 108.
    Wakelam, M. J., and Walker, D. G., FEBS Lett.111 (1980) 115–119.Google Scholar
  109. 109.
    Wakelam, M. J., and Walker, D. G., Biochem. J.196 (1981) 383–390.Google Scholar
  110. 110.
    Walker, D. G., and Holland, G., Biochem. J.97 (1965) 845–854.Google Scholar
  111. 111.
    Walker, P. R., Bonney, R. J., and Potter, V. R., Biochem. J.140 (1974) 523–529.Google Scholar

Copyright information

© Birkhäuser Verlag 1983

Authors and Affiliations

  • H. -J. Böhme
    • 1
  • G. Sparmann
    • 1
  • E. Hofmann
    • 1
  1. 1.Institute of Physiological ChemistryKarl-Marx-University, DDRLeipzigGerman Democratic Republic

Personalised recommendations