Skip to main content

Advertisement

Log in

Implications for persistent chlamydial infections of phagocyte-microorganism interplay

  • Current Topic: Review
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

In vitro models ofChlamydia trachomatis inhibition by cytokines, human-monocyte derived macrophages (HMDM) and human polymorphonuclear leukocytes (HPMN) are discussed in an attempt to delineate the molecular basis of parasite-host cell interplay in persistent and chronic chlamydial infection. Interferon gamma (IFN) has been found to reversibly inhibit chlamydial growth at an early stage in the replicative cycle, while tumor necrosis factor (TNF) has a more profound effect on chlamydial growth resulting in production of aberrant reticulate bodies and enhancement of production of prostaglandin E2(PGE2).Chlamydia trachomatis (serovar L2) replicate in HMDM while serovar K has been found to be restricted in these cells. Chlamydiae are killed by HPMN but the cell walls persist undegraded, inducing production of oxygen radicals which can be demonstrated to induce DNA strand scissions in HeLa target cells. Evidence is accumulating that chlamydia specific serum IgA antibodies may serve as a noninvasive serological marker for diagnosis of a number of acute and persistentChlamydia trachomatis infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moulder JW Comparative biology of intracellular parasitism. Microbiology Reviews 1985, 49: 298–337.

    Google Scholar 

  2. Byrne GI, Turco J Interferon and nonviral pathogens. Marcel Dekker, New York, 1988, p. 317.

    Google Scholar 

  3. Tamura A, Matsumoto A, Higashi N Purification and chemical composition of reticulate bodies of the meningopneumonitis organisms. Journal of Bacteriology 1967, 93: 3009–2016.

    Google Scholar 

  4. Sarov I, Becker Y RNA in the elementary bodies of trachoma agent. Nature 1968, 217: 849–852.

    Google Scholar 

  5. Sarov I, Becker Y Trachoma agent DNA. Journal of Molecular Biology 1969, 42: 581–589.

    Google Scholar 

  6. Ward ME Chlamydial classification, development and structure. British Medical Bulletin 1983, 39: 109–115.

    Google Scholar 

  7. Friis RR Interaction of L cells andChlamydia psittaci: entry of the parasite and host responses to its development. Journal of Bacteriology 1972, 110: 706–721.

    Google Scholar 

  8. Eissenberg LG, Wyrick PB, Davis CH, Rumpp JW Chlamydia psittaci elementary body envelope: ingestion and inhibition of phagolysosome fusion. Infection and Immunity 1983, 40: 741–751.

    Google Scholar 

  9. Schachter J, Grossman M Chlamydial infections. Annual Review of Medicine 1981, 32: 45–61.

    Google Scholar 

  10. Ladany S, Sarov I Recent advances inChlamydia trachomatis. European Journal of Epidemiology 1985, 1: 235–256.

    Google Scholar 

  11. Kuo CC, Chen HH, Wang SP, Grayston JT: Characterization of TWAR strains, a new group ofChlamydia psittaci. In: Oriel D, Ridgway G, Schachter J, Taylor-Robinson D, Ward M (ed): Chlamydial infections. Cambridge University Press, Cambridge, p. 321–324.

  12. Yang YS, Kuo CC, Chen WJ Reactivation ofChlamydia trachomatis lung infection in mice by cortisone. Infection and Immunity 1983, 39: 655–658.

    Google Scholar 

  13. Joklik WK Interferons. In: Fields BN, Knipe DM, Melnick JL, Channock RM, Roizman B, Shope RE (ed): Virology. Raven Press, New York, 1985, p. 281–307.

    Google Scholar 

  14. Sueltenfuss EA, Pollard M Cytochemical assay of interferon produced by duck hepatitis virus. Science 1963, 139: 595–596.

    Google Scholar 

  15. Merigan TC, Hanna L Characteristics of interferon induced in vitro and in vivo by a TRIC agent. Proceedings of the Society for Experimental Biology and Medicine 1966, 122: 421–424.

    Google Scholar 

  16. Rothermal CD, Byrne GI, Havell EA Effect of interferon on the growth ofChlamydia trachomatis in mouse fibroblasts (L cells). Infection and Immunity 1983, 39: 362–370.

    Google Scholar 

  17. Shemer Y, Sarov I Chlamydia trachomatis growth inhibition by IFN-gamma: implications for persistent chlamydial infections. In: Byrne GI, Turco J (ed): Interferon and nonviralpathogens. Marcel Dekker, New York, 1988, p. 73–94.

    Google Scholar 

  18. Shemer Y, Kol R, Sarov I Tryptophan reversal of recombinant human gamma-interferon inhibition ofChlamydia trachomatis growth. Current Microbiology 1987, 16: 9–13.

    Google Scholar 

  19. Shemer Y, Sarov I Inhibition of growth ofChlamydia trachomatis by gamma interferon. Infection and Immunity 1985, 48: 592–596.

    Google Scholar 

  20. Manor E, Sarov I Inhibition ofChlamydia trachomatis Replication in HEp-2 cells by human monocyte-derived macrophages. Infection and Immunity 1988, 56: 3280–3284.

    Google Scholar 

  21. Shemer-Avni Y, Wallach D, Sarov I Inhibition ofChlamydia trachomatis growth by recombinant tumor necrosis factor. Infection and Immunity 1988, 56: 2503–2506.

    Google Scholar 

  22. Kuo CC Cultures ofChlamydia trachomatis in mouse peritoneal macrophages: factors affecting organism growth. Infection and Immunity 1978, 20: 439–445.

    Google Scholar 

  23. Manor E, Sarov I Fate ofChlamydia trachomatis in human monocytes and monocyte-derived macrophages. Infection and Immunity 1986, 54: 90–95.

    Google Scholar 

  24. Yong EC, Chi EY, Kuo CC Differential antimicrobial activity of human mononuclear phagocytes against the human biovars ofChlamydia trachomatis. Journal of Immunology 1987, 139: 1297–1302.

    Google Scholar 

  25. Monnickendam AM, Pearce JH Immune response and chlamydial infection. British Medical Bulletin 1983, 39: 187–193.

    Google Scholar 

  26. Bard J, Levitt D Chlamydia trachomatis (L2 servoar) binds to a distinct subpopulation of human peripheral blood leukocytes. Clinical Immunology and Immunopathology 1986, 38: 150–160.

    Google Scholar 

  27. Yong EC, Klebanoff SJ, Kuo CC Toxic effect of human polymorphonuclear leukocytes onChlamydia trachomatis. Infection and Immunity 1982, 37: 422–426.

    Google Scholar 

  28. Zvillich M, Sarov I Interaction between human polymorphonuclear leucocytes andChlamydia trachomatis elementary bodies: electron microscopy and chemiluminescent response. Journal of General Microbiology 1985, 131: 2627–2635.

    Google Scholar 

  29. Soderlund G, Dehlgren C, Kihlstrom E Interactions between human polymorphonuclear leukocytes andChlamydiatrachomatis. FEMS Microbiology Letters 1984, 2: 21–25.

    Google Scholar 

  30. Zvillich M, Kol R, Riklis E, Sarov I Induction of DNA strand scissions in HeLa cells by human polymorphonuclear leucocytes activated byChlamydia trachomatis elementary bodies. Journal of General Microbiology 1988, 134: 2405–2412.

    Google Scholar 

  31. Zvillich M, Sarov I The persistence ofChlamydia trachomatis elementary body cell walls in human polymorphonuclear leucocytes and induction of a chemiluminescent response. Journal of General Microbiology 1989, 135: 95–104.

    Google Scholar 

  32. Keat A, Dixey J, Sonnex C, Thomas B, Osborn M, Taylor-Robinson D Chlamydia trachomatis and reactive arthritis: the missing link. Lancet 1987, ii: 72–74.

    Google Scholar 

  33. Dayer JM, Beutler B, Cerami A Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. Journal of Experimental Medicine 1985, 162: 2163–2168.

    Google Scholar 

  34. Ginsburg I Can chronic and self-perpetuating arthritis in the human be caused by arthrotropic undegraded microbial cell wall constituents? A working hypothesis. Rheumatology and Rehabilitation 1977, 16: 141–149.

    Google Scholar 

  35. Yong EC, Chi EY, Chen WJ, Kuo CC Degradation ofChlamydia trachomatis in human polymorphonuclear leukocytes: an ultrastructural study of peroxidase-positive phagolysosomes. Infection and Immunity 1986, 53: 427–431.

    Google Scholar 

  36. Burkhardt H, Schwingel M, Menninger H, Macartney HW, Tschesche H Oxygen radicals as effectors of cartilage destruction. Arthritis and Rheumatism 1986, 29: 379–387.

    Google Scholar 

  37. Sarov I, Insler V, Sarov B, Cevenini R, Rumpianesi F, Donati M, Kleinman D, Piura B, Lieberman J, Kimmel N, Friedman M, La Placa M Specific serum IgA antibodies in the diagnosis of active viral and chlamydial infections. In: Sanna A, Morace G (ed): New horizons in microbilogy. Elsevier, Amsterdam, 1984, p. 157–168.

    Google Scholar 

  38. Sarov I, Siqueiva-Linhaves M, Chardonnet Y, Levy E, Aymard M, Bossard S, Nord E, Revillard JP Detection of specific IgA antibodies in serum of kidney transplant patients with recurrent cytomegalovirus infection. Intervirology 1981, 15: 228–234.

    Google Scholar 

  39. Sarov I, Friedman M, Levy E, Pascal L, Aymard M, Bosshard S, Chardonnet Y, Revillard JP Detection of recurrent cytomegalovirus infection in renal-transplant patients. Journal of Infectious Diseases 1984, 149: 277.

    Google Scholar 

  40. van Loon AM, van der Loot JTM, Heessen FWA, van der Veen J Quantitation of immunoglobulin E antibody to cytomegalovirus by antibody capture enzymelinked immunosorbent assay. Journal of Clinical Microbiology 1985, 21: 558–561.

    Google Scholar 

  41. Doerr HW, Rentschler M, Scheifler G Serologic detection of active infections with human herpes viruses (CMV, EBV, HSV, VZV): diagnostic potential of IgA class and IgG subclass-specific antibodies. Infection 1985, 15: 11–16.

    Google Scholar 

  42. Tovi F, Hadar T, Sidi J, Sarov B, Sarov I The significance of specific serum IgA antibodies in the serum in the early diagnosis of zoster. Journal of Infectious Diseases 1985, 152: 230.

    Google Scholar 

  43. Nigro G, Nanni F, Midulla M Rubella reinfection of the fetus. Lancet 1985, i: 1040–1041.

    Google Scholar 

  44. Nomura M, Imai M, Tsuda F, Furuta S, Akahane Y, Tachibana K, Usuda S, Miyakawa Y, Mayumi M Immunoglobulin A antibody against hepatitis B core antigen in the acute and persistent infection with hepatitis B virus. Gastroenterology 1985, 89: 1109–1113.

    Google Scholar 

  45. Peacock MG, Philip RN, Williams JC, Faulkner RS Serological evaluation of Q fever in humans: enhanced phase I titers of immunoglobulins G and A are diagnostic for Q fever endocarditis. Infection and Immunity 1983, 41: 1089–1098.

    Google Scholar 

  46. Bitzan M, Hack HJ, Mauff G Yersinia enterocolitica serodiagnosis: a dual role of specific IgA evaluation of microagglutination and ELISA. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene 1987, 267: 194–205.

    Google Scholar 

  47. Toivanen A, Lahesmaa-Rantala R, Vuento R, Granfors K Association of persisting IgA response with yersinia triggered reactive arthritis: a study in 104 patients. Annals of the Rheumatic Diseases 1987, 46: 898–901.

    Google Scholar 

  48. Booth L, Holdstock G, MacBride H, Hawtin P, Gibson JR, Ireland A, Bamforth J, DuBoulay CI, Lloyd RS, Pearson AD Clinical importance ofCampylobacter pyloridis and associated serum IgG and IgA antibody responses in patients undergoing upper gastrointestinal endoscopy. Journal of Clinical Pathology 1986, 39: 215–219.

    Google Scholar 

  49. Cevenini R, Sarov I, Rumpianesi F, Donati M, Melega C, Varotti C, La Placa M Serum specific IgA antibody toChlamydia trachomatis in patients with chlamydial infections detected by ELISA and an immunofluorescence test. Journal of Clinical Pathology 1984, 37: 686–691.

    Google Scholar 

  50. Osborne NG, Hecht Y, Gorsline J, Forbaes GA, Morgenstern F, Winkelman J A comparison of culture, direct fluorescent antibody test, and a quantitative indirect immunoperoxidase assay for detection ofChlamydia trachomatis in pregnant women. Obstetrics and Gynecology 1988, 71: 412–415.

    Google Scholar 

  51. Csango PA, Sarov B, Schiotz H, Sarov I Chlamydia trachomatis isolation and the comparative diagnostic value of serology in women seeking abortion. Journal of Clinical Pathology 1988, 91: 89–92.

    Google Scholar 

  52. Hanuka N, Glasner M, Sarov I Detection of IgG and IgA antibodies to Chlamydiatrachomatis in sera of patients with chlamydial infections: use of immunoblotting and immunoperoxidase assays. Sexually Transmitted Diseases 1988, 15: 93–99.

    Google Scholar 

  53. Sarov I, Sarov B, Lunenfeld E, Hagay Z, Chaim W, Piura B The significance of chlamydia specific serum IgA antibodies inChlamydia trachomatis infections. Proceedings of the European Society for Chlamydia Research 1988, 1: 234–238.

    Google Scholar 

  54. Hermann B, Dannevig L, Stenberg K, Mardh PA The immune response and its value in the diagnosis of chlamydial conjunctivitis compared to culture, ELISA, and immunofluorescence tests. Proceedings of the European Society for Chlamydia Research 1988, 1: 265.

    Google Scholar 

  55. Yoshizawa H, Haraziri M, Hashizume S Specific serum IgA antibodies in diagnosis ofChlamydia trachomatis infection. Journal of the Japanese Association of Infectious Disease 1987, 61: 893–899.

    Google Scholar 

  56. Hagay ZJ, Sarov B, Sachs J, Shaked O, Sarov I Detection ofChlamydia trachomatis in male patients with urethritis: Serology versus isolation in cell culture. Genitourinary Medicine 1989, 165: 166–170.

    Google Scholar 

  57. Kasamatsu T, Motoyasu S, Hiroyuki Y, Takashi K, Mizuno M The significance of serum specific IgA antibody toChlamydia trachomatis in the diagnosis and treatment of chlamydial infection in female genital tract. Acta Obstetrica et Gynaecologica Japonica 1989, 41: 479–486.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the late Professor Israel Sarov. He was an exemplary scientist and teacher and is greatly missed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarov, I., Geron, E., Shemer-Avni, Y. et al. Implications for persistent chlamydial infections of phagocyte-microorganism interplay. Eur. J. Clin. Microbiol. Infect. Dis. 10, 119–123 (1991). https://doi.org/10.1007/BF01964423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01964423

Keywords

Navigation