Skip to main content

Advertisement

Log in

Correlation between pharmacokinetics, pharmacodynamics and efficacy of antibacterial agents in animal models

  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

On the basis of a review of published literature it is demonstrated that pharmacokinetic parameters of antibacterial agents correlate well with therapeutic efficacy in animal models, provided pharmacodynamic parameters are taken into account. The time that serum levels exceed the MIC is the most significant parameter determining efficacy of β-lactams, whereas the efficacy of aminoglycosides is dependent on serum concentrations and the area under the curve. The efficacy of quinolones tends to be correlated to the doses administered or drug levels achieved. However, specific pharmacodynamic properties contribute significantly to the therapeutic efficacy of a few quinolones only whereas other quinolones lack these specific pharmacodynamic attributes. Thus, the correlation of pharmacokinetic parameters with therapeutic efficacy provides important basic concepts for the design of preclinical and clinical studies in the course of which additional pharmacodynamic properties will become apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eagle H, Fleischmann R, Musselmann AD: Effect of schedule of administration on the therapeutic efficacy of penicillin. Importance of the aggregate time penicillin remains at effectively bactericidal levels. American Journal of Medicine 1950, 9: 280–299.

    Google Scholar 

  2. Merrikin A, Rolinson G: Antibiotic levels in experimentally infected mice in relation to therapeutic effect and antibacterial activity in vitro. Journal of Antimicrobial Chemotherapy 1979, 5: 423–429.

    Google Scholar 

  3. Gerber AU, Craig WA, Brugger HP, Feller C, Vastola AP, Brandel J: Impact of dosing intervals on activity of gentamicin and ticarcillin againstPseudomonas aeruginosa in granolucytopenic mice. Journal of Infectious Diseases 1983, 147: 910–917.

    Google Scholar 

  4. Gerber AU, Feller-Segessenmann C: In vivo assessment of in vitro killing patterns ofPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1985, 15: 201–206.

    Google Scholar 

  5. Gerber AU, Vastola AP, Brandel J, Craig WA: Selection of aminoglycoside-resistant variants ofPseudomonas aeruginosa in an in vivo model. Journal of Infectious Diseases 1982, 146: 691–697.

    Google Scholar 

  6. Gerber AU, Wiprachtiger P, Stettler-Spichiger U, Lebek G: Constant infusion versus intermittent doses of gentamicin againstPseudomonas aeruginosa in vitro. Journal of Infectious Diseases 1982, 145: 554–560.

    Google Scholar 

  7. Gerding DN, Peterson LR, Moody JA, Fasching CE: Mezlocillin, ceftizoxime and amikacin alone and in combination against sixEnterobacteriaceae in a neutropenic site in rabbits. Journal of Antimicrobial Chemotherapy 1985, 15: 207–219.

    Google Scholar 

  8. Gerber AR, Brugger HP, Feller C, Stritzko T, Stalder B: Antibiotic therapy of infections due toPseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. Journal of Infectious Diseases 1986, 153: 90–97.

    Google Scholar 

  9. Vogelmann B, Craig WA: Kinetics of antimicrobial activity. Journal of Pediatrics 1986, 108: 835–840.

    Google Scholar 

  10. Vogelmann B, Gudmundsson S, Legget J.Turnidge J, Ebert S, Craig WA: Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. Journal of Infectious Diseases 1988, 158: 831–847.

    Google Scholar 

  11. Frimodt-Moller N, Bentzon MW, Thomson VF: Experimental infection withStreptococcus pneumoniae in mice: correlation of in vitro activity and pharmacokinetic parameters with in vivo effect for 14 cephalosporins. Journal of Infectious Diseases 1986, 154: 511–517.

    Google Scholar 

  12. Frimodt-Moller N, Bentzon MW, Thomson VF: Experimental pneumococcus infection in mice: comparative in vitro and in vivo effect of cefuroxime, cefotaxime and ceftriaxone. Acta Pathologica, Microbiologica, Immunologica Scandinavia (B) 1987, 95: 261–267.

    Google Scholar 

  13. Frimodt-Moller N: Correlation of in vitro activity and pharmacokinetic parameters with effect in vivo for antibiotics. Danish Medical Bulletin 1988, 35: 422–437.

    Google Scholar 

  14. Drusano GL: Role of pharmacokinetics in the outcome of infections. Antimicrobial Agents and Chemotherapy 1988, 32: 289–297.

    Google Scholar 

  15. Roosendaal R, BokkerWoudenberg IAJM, van den Berghe van Raffe M, Kruk van den Berg JC, Michel MF: Comparative activities of ciprofloxacin and ceftazidime againstKlebsiella pneumoniae in vitro and in leukopenic rats. Antimicrobial Agents and Chemotherapy 1987, 31: 1809–1815.

    Google Scholar 

  16. Hackbarth CJ, Chambers HF, Stella F, Shibl A, Sande MA: Ciprofloxacin in experimentalPseudomonas aeruginosa meningitis in rabbits. Journal of Antimicrobial Chemotherapy 1986, 18, Supplement D: 65–69.

    Google Scholar 

  17. Fernandes PB, Shipkowitz N, Swanson R: Comparative efficacy of the fluoroquinolones in experimental animal infections: correlation with in vitro potency and pharmacokinetics. In: Fernandes PB (ed): International telesymposium on quinolones. J. R. Prous, Barcelona, 1989, p. 255–268.

    Google Scholar 

  18. Chin NX, Neu HC: Post-antibiotic suppressive effect of ciprofloxacin against gram positive and gram negative bacteria. American Journal of Medicine 1987, 82, Supplement 4A: 58–62.

    Google Scholar 

  19. Chin NX, Neu HC: In vitro activity of lomefloxacin (SC-4711; NY-198), a difluoroquinolone 3-carboxylic acid, compared with those of other quinolones. Antimicrobial Agents and Chemotherapy 1988, 32: 656–662.

    Google Scholar 

  20. Smith JT: Awakening the slumbering potential of the 4-quinolone antibiotics. Pharmaceutical Journal 1984, 233: 299–305.

    Google Scholar 

  21. Lewin CS, Amyes SGB, Smith JT: Bactericidal activity of enoxacin and lomefloxacin againstEscherichia coli KL 16. European Journal of Clinical Microbiology and Infectious Diseases 1989, 8: 731–733.

    Google Scholar 

  22. Zeiler HJ, Voigt WH: Efficacy of ciprofloxacin in stationary phase bacteria in vivo. American Journal of Medicine 1987, 82, Supplement 4A: 87–90.

    Google Scholar 

  23. Dalhoff A, Smith JT: Wirkungsweise der Chinolone. In: Siegenthaler W (ed): Aktuelle Aspekte der Infektiologie. Georg Thieme, Stuttgart, 1987, p. 107–117.

    Google Scholar 

  24. Dalhoff A: Interaction of aminoglycosides and ciprofloxacin with bacterial membranes. In: Adam D, Hahn H, Opferkuch W (ed): The influence of antibiotics on the host parasite relationship. Volume 2. Springer, Berlin, 1985, p. 16–27.

    Google Scholar 

  25. Suerbaum S, Leying H, Kroll WP, Gmeiner J.Opferkuch W: Influence of β-lactam antibiotics and ciprofloxacin on cell envelope ofEscherichia coli. Antimicrobial Agents and Chemotherapy 1987, 31: 1106–1110.

    Google Scholar 

  26. Chapman JS, Georgopapadakou NH: Routes of quinolone permeation inEscherichia coli. Antimicrobial Agents and Chemotherapy 1988, 32: 438–442.

    Google Scholar 

  27. Dalhoff A: Pleiotropic actions of aminoglycosides. Antibiotics and Chemotherapy 1987, 39: 182–204.

    Google Scholar 

  28. Dalhoff A: Pharmakodynamik von Antibiotika. In: Kilian J, Ahnefeld F, Vanek E (ed): Klinische Anästhesiologie und Intensivmedizin. Band 36. Springer, Berlin, 1988, p. 27–37.

    Google Scholar 

  29. Zeiler HJ, Beermann D, Wingender W, Förster D, Schacht P: Bactericidal activity of ciprofloxacin, norfloxacin and ofloxacin in serum and urine after oral administration to healthy volunteers. Infection 1988, 16, Supplement 1: 19–23.

    Google Scholar 

  30. Dalhoff A, Döring D: Action of quinolones on gene expression and bacterial membranes. Antibiotics and Chemotherapy 1987, 39: 205–214.

    Google Scholar 

  31. Dalhoff A, Döring D: Interference of ciprofloxacin with the expression of pathogenicity factors ofPseudomonas aeruginosa. In: Adam D, Hahn H, Opferkuch W (ed): The influence of antibiotics on the host parasite relationship. Volume 2. Springer, Berlin, 1985, p. 245–255.

    Google Scholar 

  32. Dalhoff A, Döring D: Interference of ciprofloxacin with the expression of pathogenicity factors ofPseudomonas aeruginosa. In: Neu HC, Weuta H (ed): First International Ciprofloxacin Workshop. Excerpta Medica, Amsterdam, 1986, p. 213–219.

    Google Scholar 

  33. Govan JRW, Doherty C: Influence of antibiotics, alginate biosynthesis and hypersensitivity mutations ofPseudomonas virulence factors associated with respiratory infections in patients with cystic fibrosis. In: Ishigami J (ed): Proceedings of the 14th International Congress of Chemotherapy. University of Tokyo Press, 1985, p. 857–858.

  34. Bender SW, Posselt HG, Wönne R, Stöver B, Strehl R, Shah PM, Bauernfeind A: Ciprofloxacin treatment of patients with cystic fibrosis andPseudomonas bronchopneumonia. In: Neu HC, Weuta H (ed): First International Ciprofloxacin Workshop. Excerpta Medica, Amsterdam, 1986, p. 272–278.

    Google Scholar 

  35. Kernodle DS, Classen DC, Burke JR, Kaiser AB: Failure of cephalosporins to preventStaphylococcus aureus surgical wound infections. Journal of the American Medical Association 1990, 263: 961–966.

    Google Scholar 

  36. Dalhoff A, Cullmann W: Specificity of β-lactamase induction inPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1984, 14: 349–357.

    Google Scholar 

  37. Cullmann W, Dalhoff A, Dick W: Nonspecific induction of β-lactamase inEnterobacter cloacae. Journal of General Microbiology 1984, 130: 1781–1786.

    Google Scholar 

  38. Cullmann W, Dalhoff A, Dick W: Nonspecific induction of β-lactamase inEnterobacter cloacae. Journal of Infectious Diseases 1983, 148: p. 765.

    Google Scholar 

  39. Dalhoff A: Interaction of mezlocillin and cefoxitin againstProteus morganii in the granuloma pouch model. European Journal of Clinical Microbiology 1982, 1: 243–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalhoff, A., Ullmann, U. Correlation between pharmacokinetics, pharmacodynamics and efficacy of antibacterial agents in animal models. Eur. J. Clin. Microbiol. Infect. Dis. 9, 479–487 (1990). https://doi.org/10.1007/BF01964287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01964287

Keywords

Navigation