Conditions required for the antibacterial activity of zidovudine

  • C. S. Lewin
  • S. G. B. Amyes
Notes New Antimicrobial Agents


In a study to determine the conditions required for its antibacterial activity, zidovudine was found to be bactericidal againstEscherichia coli andSalmonella typhimurium in nutrient broth over 6 h. Zidovudine was also found to be active against ten clinical isolates ofSalmonella andEscherichia coli at 1 mg/l, which is a clinically achievable concentration of the drug. Bacterial protein synthesis was required for the bactericidal activity of zidovudine against bothEscherichia coli andSalmonella typhimurium. Zidovudine was found to be inactive against non-dividing bacteria, as it was unable to kill bacteria of either species when they were suspended in PBS.


Internal Medicine Protein Synthesis Antibacterial Activity Zidovudine Clinical Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitsuya, H., Weinhold, K. H., Furman, P. A., St. Clair, M. H., Nusinoff-Lehrman, S., Gallo, R. C., Bolognesi, D., Barry, D. W., Broder, S.: Zidovudine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect on human T-lymphoto-trophic virus type III/-lymphadenopathy associated virus in vitro. Proceedings of the National Academy of Sciences of the USA 1985, 82: 7096–7100.Google Scholar
  2. 2.
    Mitsuya, H., Broder, S.: Strategies for antiviral therapy in AIDS. Nature 1987, 325: 773–778.Google Scholar
  3. 3.
    Yarchoan, R., Klecker, R. W., Weinhold, J. J., Markham, P. D., Lyerly, H. K., Durack, D. T., Gelmann, E., Nusinoff Lehrman, S., Blum, R. M., Barry, D. W., Shearer, G. M., Fischl, M. A., Mitsuya, H., Gallo, R. C., Collins, J. M., Bolognesi, D. P., Myers, C. E., Broder, S.: Administration of zidovudine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet 1986, i: 575–580.Google Scholar
  4. 4.
    Elwell, L. P., Ferone, R., Freeman, G. A., Fyfe, J. A., Hill, J. A., Ray, P. H., Richards, C. A., Singer, S. C., Knick, V. B., Rideout, J. L., Zimmerman, T. P.: Antibacterial activity and mechanism of action of zidovudine (BW A509U). Antimicrobial Agents and Chemotherapy 1987, 31: 274–280.Google Scholar
  5. 5.
    Smith, J. T., Lewin, C. S.: Chemistry and mechanisms of action of the quinolone antibacterials. In: Andriole, V. T. (ed.): The quinolones. Academic Press, London, 1988, p. 23–82.Google Scholar
  6. 6.
    Lewin, C. S., Smith, J. T.: Bactericidal mechanisms of ofloxacin. Journal of Antimicrobial Chemotherapy 1988, 22, Supplement C: 1–8.Google Scholar
  7. 7.
    Amyes, S. G. B., Smith, J. T.: Trimethoprim action and its analogy with thymine starvation. Antimicrobial Agents and Chemotherapy 1974, 5: 169–178.Google Scholar
  8. 8.
    Tennent, J. M., Young, H. K., Lyon, B. R., Amyes, S. G. B., Skurray, R. A.: Common trimethoprim determinants encoding dihydrofolate reductase in clinical isolates ofStaphylococcus aureus and coagulase-negative staphylococci. Journal of Medical Microbiology 1988, 26: 67–73.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1989

Authors and Affiliations

  • C. S. Lewin
    • 1
  • S. G. B. Amyes
    • 1
  1. 1.Department of BacteriologyUniversity of Edinburgh Medical SchoolEdinburghUK

Personalised recommendations