Emergence during unsuccessful chemotherapy of multiple drug resistance in a strain ofMycobacterium tuberculosis

  • N. Rastogi
  • B. C. Ross
  • B. Dwyer
  • K. S. Goh
  • S. Clavel-Sérès
  • V. Jeantils
  • P. Cruaud
Article

Abstract

Serial isolates ofMycobacterium tuberculosis were cultured from a patient who failed to respond to standard antituberculous chemotherapy. Isolates were cultured in March 1989, July 1989, December 1989 and May 1990. Each successive isolate was found to be resistant to a wider range of antituberculous drugs than its predecessors. The initial isolate was resistant to isoniazid and rifampin, the second isolate was also resistant to ethambutol, the third was also resistant to pyrazinamide, ansamycin (= rifabutin) and ofloxacin and the last isolate was also resistant to ciprofloxacin and sparfloxacin. All four isolates' bacteriophage typing profiles and DNA restriction fragment patterns determined by Southern blot hybridization using the IS6110 /IS986 probes and the new probe pTBN12 were concordant. It was concluded that this patient was persistently infected with a single strain ofMycobacterium tuberculosis which developed resistance to a number of families of drugs but did not show any significant change in typing patterns. The problem of acquired multiple drug resistance, particularly to fluoroquinolones and rifamycins, represents a new challenge in tuberculosis therapy.

Keywords

Isoniazid Ofloxacin Rifampin Ethambutol Pyrazinamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stybio K, Rouillon A Estimated global incidence of smear positive pulmonary tuberculosis. Unreliability of officially reported figures on tuberculosis. Bulletin of the International Union against Tuberculosis 1981, 56: 118–125.Google Scholar
  2. 2.
    Advisory Committee for the Elimination of Tuberculosis A strategic plan for the elimination of tuberculosis in the United States. Morbidity and Mortality Weekly Report 1989, 38, Supplement 1: 1–25.Google Scholar
  3. 3.
    Brudney K, Dobkin J Resurgent tuberculosis in New York City. Human immunodeficiency virus, homelessness, and the decline of the tuberculosis control programs. American Review of Respiratory Diseases 1991, 144: 745–749.Google Scholar
  4. 4.
    Monno L, Angarano G, Carbonara S, Coppola S, Costa D, Quarto M, Pastore G Emergence of drug-resistantMycobacterium tuberculosis in HIV-infected patients. Lancet 1991, 337: 852.Google Scholar
  5. 5.
    Perriëns JH, Colebunders RL, Karahunga C, Willame JC, Jeugmans J, Kaboto M, Mukadi Y, Pauwels P, Ryder RW, Prignot J, Piot P Increased mortality and tuberculosis treatment failure rate among HIV seropositive compared with HIV seronegative patients with pulmonary tuberculosis treated with “standard” chemotherapy in Kinshasa, Zaire. American Review of Respiratory Diseases 1991, 144: 750–755.Google Scholar
  6. 6.
    Reichman LB The U-shaped curve of concern. American Review of Respiratory Diseases 1991, 144: 741–742.Google Scholar
  7. 7.
    Hermans PWN, van Soolingen D, Dale JW, Schuitma ARJ, McAdam RA, Catty D, van Embden JDA Insertion element IS986 fromMycobacterium tuberculosis: a useful tool for diagnosis and epidemiology of tuberculosis. Journal of Clinical Microbiology 1990, 28: 2051–2058.Google Scholar
  8. 8.
    Ross BC, Raios K, Jackson K, Dwyer B Molecular cloning of a highly repeated DNA element fromMycobacterium tuberculosis and its use as an epidemiological tool. Journal of Clinical Microbiology 1992, 30: 942–946.Google Scholar
  9. 9.
    David HL, Lévy-Frébault V, Thorel MF Méthode de laboratoire pour mycobactériologie clinique. In: Commission des Laboratoires de Références et d'Expertise de l'Institut Pasteur. Institut Pasteur, Paris, 1989, p. 87.Google Scholar
  10. 10.
    Rastogi N, Goh KS In vitro activity of the new difluorinated quinolone sparfloxacin (AT-4140) againstMycobacterium tuberculosis compared with activities of ofloxacin and ciprofloxacin. Antimicrobial Agents and Chemotherapy 1991, 35: 1933–1936.Google Scholar
  11. 11.
    Rastogi N, Goh KS, David HL Activity of five fluoro-quinolones againstMycobacterium avium-intracellulare complex andM. xenopi. Annales de l'Institut Pasteur 1988, 139: 233–237.Google Scholar
  12. 12.
    Siddiqi SH, Libonati JP, Middlebrook G Evaluation of a rapid radiometric method for drug-susceptibility testing ofMycobacterium tuberculosis. Journal of Clinical Microbiology 1981, 13: 908–912.Google Scholar
  13. 13.
    Rado TA, Bates JH, Engel HWB, Mankiewicz E, Murohashi T, Mizugucchi Y, Sula L World Health Organization studies on bacteriophage typing of mycobacteria. American Review of Respiratory Diseases 1975, 111: 459–468.Google Scholar
  14. 14.
    Clavel-Sérès S, Clément F Répartition des lysotypes deMycobacterium tuberculosis en rélation avec le pays d'origine du malade. Annales de l'Institut Pasteur 1984, 135B: 35–44.Google Scholar
  15. 15.
    Clavel-Sérès S, Clément F, Jimenez-Mimas C Répartition des lysotypes deMycobacterium tuberculosis en France. Revue Française de Maladies Respiratoires 1988, 5: 577–581.Google Scholar
  16. 16.
    Eisenach KD, Cave DM, Bates JH, Crawford JT Polymerase chain reaction amplification of a repititive DNA sequence specific forMycobacterium tuberculosis. Journal of Infectious Diseases 1990, 161: 977–981.Google Scholar
  17. 17.
    Ross BC, Raios K, Jackson KK, Sievers A, Dwyer B Differentiation ofMycobacterium tuberculosis strains using a non-radioactive Southern blot hybridization method. Journal of Infectious Diseases 1991, 163: 904–907.Google Scholar
  18. 18.
    McAdam RA, Hermans PMW, van Soolingen D, Zainuddin ZF, Catty D, van Embden JDA, Dale JW Characterization of aMycobacterium tuberculosis insertion sequence belonging to the IS3 family. Molecular Microbiology 1990, 4: 1607–1613.Google Scholar
  19. 19.
    Thierry D, Brisson-Noël A, Vincent Lévy-Frébault V, Nguyen S, Guesdon JL, Gicquel B Characterization of aMycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. Journal of Clinical Microbiology 1990, 28: 2668–2673.Google Scholar
  20. 20.
    Mazurek GH, Cave MD, Eisenach KD, Wallace RJ, Bates JH, Crawford JT Chromosomal DNA fingerprint patterns produced with IS6110 as strainspecific markers for epidemiological study of tuberculosis. Journal of Clinical Microbiology 1991, 29: 2030–2033.Google Scholar
  21. 21.
    Otal I, Martin C, Vincent Lévy-Frébault V, Thierry D, Gicquel B Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. Journal of Clinical Microbiology 1991, 29: 1252–1254.Google Scholar
  22. 22.
    van Soolingen D, Hermans PWM, de Haas PEW, Soll DR, van Embden JDA Occurrence and stability of insertion sequences inMycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. Journal of Clinical Microbiology 1991, 29: 2578–2586.Google Scholar

Copyright information

© Friedr, Vieweg & Sohn Verlagsgesellschaft mbH 1992

Authors and Affiliations

  • N. Rastogi
    • 1
  • B. C. Ross
    • 2
  • B. Dwyer
    • 2
  • K. S. Goh
    • 1
  • S. Clavel-Sérès
    • 1
  • V. Jeantils
    • 3
  • P. Cruaud
    • 3
  1. 1.Unité de la Tuberculose et des MycobactériesInstitut PasteurParis Cedex 15France
  2. 2.Clinical Pathology LaboratoryFairfield HospitalFairfieldAustralia
  3. 3.Hopital Jean VerdierBondy CedexFrance

Personalised recommendations