Advertisement

Dialysis fluids and local host resistance in patients on continuous ambulatory peritoneal dialysis

  • H. van Bronswijk
  • H. A. Verbrugh
  • H. C. J. M. Heezius
  • J. van der Meulen
  • P. L. Oe
  • J. Verhoef
Article

Abstract

The ability of polymorphonuclear leukocytes, monocytes and peritoneal macrophages to mount a respiratory burst in continuous ambulatory peritoneal dialysis (CAPD) fluids was tested in a phorbolmyristate acetate stimulated chemiluminescence assay. Fresh CAPD fluids depressed the chemiluminescence response of all three types of phagocytes tested to less than 18% of their chemiluminescence response in control buffer. When tested in spent CAPD fluids the suppression of chemiluminescence was 30–32%. Oxygen consumption of polymorphonuclear leukocytes was depressed in fresh CAPD fluids to below 40%. Both phagocytosis ofEscherichia coli by and bactericidal capacity of polymorphonuclear leukocytes and monocytes were suppressed in fresh CAPD fluids but not in spent effluents. The influence of acidic pH and hyperosmolality on phagocytic functions were studied separately by modifying the acidity or the glucose content of the control buffer. pH values below 6.0 significantly inhibited chemiluminescence but not phagocytosis. Under hypertonic conditions, both phagocytosis and chemiluminescence were inhibited. We conclude that the currently available CAPD solutions are beyond the limits of acid and osmotic tolerance of human phagocytic cells, and may thus compromise the peritoneal defenses of CAPD patients.

Keywords

Peritoneal Macrophage Polymorphonuclear Leukocyte Respiratory Burst Continuous Ambulatory Peritoneal Dialysis Phorbolmyristate Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tenckhoff, H., Schechter, H. A bacteriologically safe peritoneal access device. Transactions of the American Society of Artificial Internal Organs 1968, 14: 181–186.Google Scholar
  2. 2.
    Oreopoulos, D. G., Robson, M., Izatt, S., Clayton, S. L., de Veber, G. A. A simple and safe technique for continuous ambulatory peritoneal dialysis. Transactions of the American Society of Artificial Internal Organs 1978, 24: 484–488.Google Scholar
  3. 3.
    Vas, S. I. Peritonitis. In: Nolph, K. D. (ed.): Peritoneal dialysis. Martinus Nijhoff, Boston/MA, 1985, p. 403–439.Google Scholar
  4. 4.
    Nolph, K. D., Cutler, S. J., Steinberg, S. M., Novak, J. W. Continuous ambulatory peritoneal dialysis in the United States: a three-year study. Kidney International 1985, 28: 198–205.PubMedGoogle Scholar
  5. 5.
    Rottembourg, J., Issad, B., Langlois, P., de Groc, F., Lepraining, M. Sclerosing encapsulating peritonitis during CAPD. Evaluation of potential risk factors. In: Maher, J. F., Winchester, J. F. (ed.): Frontiers in peritoneal dialysis. Field Rich, New York/NY 1986, p. 643–649.Google Scholar
  6. 6.
    Slingeneyer, A., Mion, C. Peritonitis prevention in continuous ambulatory peritoneal dialysis: long term efficacy of a bacteriological filter. Proceedings of the European Dialysis and Transplant Association 1982, 19: 388–396.Google Scholar
  7. 7.
    Ash, S. R., Hoswell, R., Heefer, E. M., Block, R. Effect of the Peridex filter on peritonitis rates in a CAPD population. Peritoneal Dialysis Bulletin 1983, 3: 89–93.Google Scholar
  8. 8.
    Multi-Center Study Group A randomized multi-center trial to evaluate the effects of an ultraviolet germicidal system on peritonitis rate in continuous ambulatory peritoneal dialysis. Peritoneal Dialysis Bulletin 1985, 5: 19–24.Google Scholar
  9. 9.
    Hamilton, R. W., SCD Cooperative Field Evaluation Group Reduction of peritonitis frequency by the Dupont sterile connection device. American Society of Artificial Internal Organs 1985, 14: 37.Google Scholar
  10. 10.
    Buonochristiani, U., Cozzari, M., Quitiliani, G., Carobi, C. Abatement of exogenous peritonitis using the Perugia CAPD system. Dialysis and Transplantation 1983, 12: 14–25.Google Scholar
  11. 11.
    Maiorca, R., Cantaluppi, A., Cancarini, G. C., Scalamogna, A., Broccoli, R., Graziani, G., Brasa, S., Ponticelli, C. Prospective controlled trial of a Y-connector and disinfectant to prevent peritonitis in continuous ambulatory peritoneal dialysis. Lancet 1983, ii: 642–644.CrossRefGoogle Scholar
  12. 12.
    Oreopoulos, D.G. Prevention of peritonitis during continuous ambulatory peritoneal dialysis. Peritoneal Dialysis Bulletin 1983, 3, Supplement: S18–20.Google Scholar
  13. 13.
    Verbrugh, H. A., Hoidal, J. R., Nguyen, B. Y. T., Verhoef, J., Quie, P. G., Peterson, P. K. Human alveolar macrophage cytophilic immunoglobulin G-mediated phagocytosis of protein A-positive staphylococci. Journal of Clinical Investigation 1982: 69: 63–74.PubMedGoogle Scholar
  14. 14.
    Lic, C. Y., Lam, K. W., Yam, L. T. Esterases in human leukocytes. Journal of Histochemistry and Cytochemistry 1973, 21: 1–12.PubMedGoogle Scholar
  15. 15.
    Peterson, P. K., Verhoef, J., Schmeling, D., Quie, P. G. Kinetics of phagocytosis and bacterial killing by human polymorphonuclear leukocytes and monocytes. Journal of Infectious Diseases 1977, 136: 502–509.PubMedGoogle Scholar
  16. 16.
    McLean, R. H., Forsgren, A., Bjorksten, B., Kim, Y., Quie, P. G., Michael, A. F. Decreased serum factor B concentration associated with decreased opsonization ofEscherichia coli in the idiopathic nephrotic syndrome. Pediatric Research 1977, 11: 910–916.PubMedGoogle Scholar
  17. 17.
    Hoidal, J. R., Schmeling, D., Peterson, P. K. Phagocytosis, bacterial killing, and metabolism by purified human lung phagocytes. Journal of Infectious Diseases 1981, 144: 61–71.PubMedGoogle Scholar
  18. 18.
    Quie, P. G., White, J. G., Holmes, B., Good, R. A. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease. Journal of Clinical Investigation 1967, 46: 668–679.PubMedGoogle Scholar
  19. 19.
    Mills, E. L., Rholl, K. S., Quie, P. G. Luminol-amplified chemiluminescence: a sensitive method for detecting the carrier state in chronic granulomatous disease. Journal of Clinical Microbiology 1980, 12: 52–56.PubMedGoogle Scholar
  20. 20.
    Weening, R. S., Roos, D., Loos, J. A. Oxygen consumption of phagocytizing cells in human leucocyte and granulocyte preparations: a comparative study. Journal of Laboratory and Clinical Medicine 1974, 83: 570–576.PubMedGoogle Scholar
  21. 21.
    Hamburger, H. J. Physikalisch-chemische Untersuchungen über Phagozyten; ihre Bedeutung von allgemein biologischer und pathologischer Gesichtspunkt. J. F. Bergmann, Wiesbaden, 1912, p. 260.Google Scholar
  22. 22.
    Mudd, S., McCutcheon, M., Lucke, B. Phagocytosis. Physiological Review 1934, 14: 210–275.Google Scholar
  23. 23.
    Sbarra, A. J., Shirley, W., Baumstark, J. S. Effect of osmolality on phagocytosis. Journal of Bacteriology 1963, 85: 306–313.PubMedGoogle Scholar
  24. 24.
    Lancaster, M. G., Allison, F. Studies on the pathogenesis of acute inflammation. VI: The influence of osmolality upon the phagocytic and dumping activity by human leukocytes. American Journal of Pathology 1966, 49: 1185–1200.PubMedGoogle Scholar
  25. 25.
    Greendyke, R. M., Brierty, R. E., Swisher, S. N. In vitro studies on erythrophagocytosis. Blood 1963, 22: 295–312.PubMedGoogle Scholar
  26. 26.
    Allison, F., Lancaster, M. G., Crosthwaite, J. L. Studies on the pathogenesis of acute inflammation. V: An assessment of factors that influence in vitro the phagocytic and adhesive properties of leukocytes obtained from rabbit peritoneal exudate. American Journal of Pathology 1963, 43: 775–795.PubMedGoogle Scholar
  27. 27.
    Chernew, I., Braude, A. I. Depression of phagocytosis by solutes in concentrations found in the kidney and urine. Journal of Clinical Investigation 1962, 41: 1945–1953.PubMedGoogle Scholar
  28. 28.
    Duwe, A. K., Vas, S. I., Weatherhead, J. W. Effects of the composition of peritoneal dialysis fluid on chemiluminescence, phagocytosis, and bactericidal activity in vitro. Infection and Immunity 1981, 33: 130–135.PubMedGoogle Scholar
  29. 29.
    Metal chelation therapy, oxygen radicals and human disease. Lancet 1985 i: 143–145.Google Scholar
  30. 30.
    Verbrugh, H. A., Verkooyen, R. P., Verhoef, J., Oe, P. L., van der Meulen, J. Defective complement-mediated opsonization and lysis of bacteria in commercial peritoneal dialysis solutions. In: Maher, J. F., Winchester, J. F. (ed.): Frontiers in peritoneal dialysis. Field Rich, New York/NY, 1986, p. 559–564.Google Scholar
  31. 31.
    Takahasi, T., Inada, S., Pommier, C. G., O'Shea, J. J., Brown, E. J. Osmotic stress and the freeze-thaw cycle cause shedding of Fc and C3b receptors by human polymorphonuclear leukocytes. Journal of Immunology 1985, 134: 4062–4068.Google Scholar
  32. 32.
    Verbrugh, H. A., Keane, W. F., Hoidal, J. R., Freiberg, M. R., Elliot, G. R., Peterson, P. K. Peritoneal macrophages and opsonins: Antibacterial defense in patients undergoing chronic peritoneal dialysis. Journal of Infectious Diseases 1983, 147: 1018–1029.PubMedGoogle Scholar
  33. 33.
    Keane, W. F., Comty, C. M., Verbrugh, H. A., Peterson, P. K. Opsonic deficiency of peritoneal dialysis effluent in continuous ambulatory peritoneal dialysis. Kidney International 1984, 25: 539–543.PubMedGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1988

Authors and Affiliations

  • H. van Bronswijk
    • 1
  • H. A. Verbrugh
    • 2
  • H. C. J. M. Heezius
    • 2
  • J. van der Meulen
    • 1
  • P. L. Oe
    • 1
  • J. Verhoef
    • 2
  1. 1.Department of Medicine, Division of NephrologyFree University of AmsterdamAmsterdamThe Netherlands
  2. 2.Laboratory for MicrobiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations