Molecular epidemiological analysis ofPseudomonas aeruginosa strains causing failure of antibiotic therapy in cystic fibrosis patients

  • E. Bingen
  • E. Denamur
  • B. Picard
  • P. Goullet
  • N. Lambert-Zechovsky
  • P. Foucaud
  • J. Navarro
  • J. Elion
Article

Abstract

A combination of esterase electrophoretic typing and analysis of the restriction fragment length polymorphism of ribosomal DNA regions (ribotyping) was used to compare 27Pseudomonas aeruginosa strains isolated before and after two-week courses of anti-pseudomonal treatment in seven cystic fibrosis patients. A total of 12 courses of therapy were studied in which ciprofloxacin, ceftazidime, azlocillin or imipenem were used alone or in combination with tobramycin. Isolates at a count of ≥ 106 cfu/ml of sputum were collected when there was evidence of therapeutic failure on the basis of persistence of isolates whether or not they were resistant to the antibiotic used for therapy. Emergence of resistance was observed in ten cases and failure to eradicate sensitive strains in five cases. Among the 27 isolates, eight zymotypes and five ribotypes were identified. With this typing approach, resistant post-therapy isolates were found to be identical to pre-therapy isolates in all cases but one. However, in one case an additional resistant strain was isolated after therapy besides that initially present. In all five cases in which susceptibility was still observed after treatment, pretherapy and post-therapy isolates were indistinguishable. Using this molecular typing approach, all the strains were typable. Thus combination of esterase typing and ribotyping should improve the analysis of therapeutic failure in cystic fibrosis patients.

Keywords

Cystic Fibrosis Restriction Fragment Length Polymorphism Resistant Strain Ceftazidime Tobramycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wood RE, Boat TF, Doershuk CF: State of the art: cystic fibrosis. American Review of Respiratory Disease 1976, 113: 833–878.PubMedGoogle Scholar
  2. 2.
    Høiby N, Friis B, Jensen K, Koch C, Moeller NE, Stovring S, Szaff M: Antimicrobial chemotherapy in cystic fibrosis patients. Acta Paediatrica Scandinavica 1982, 71, Supplement 301: 75–100.PubMedGoogle Scholar
  3. 3.
    Høiby N, Flensborg EW, Beck B, Friis B, Jacobsen SV, Jacobsen L:Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance ofPseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scandinavian Journal of Respiratory Disease 1977, 58: 65–79.Google Scholar
  4. 4.
    Brokopp CD, Farmer JJ: Typing methods forPseudomonas aeruginosa. In: Doggett RG (ed):Pseudomonas aeruginosa: clinical manifestations of infections and current therapy. Academic Press, New York, 1979, p. 89–133.Google Scholar
  5. 5.
    Liu PV: Changes in somatic antigens ofPseudomonas aeruginosa induced by bacteriophages. Journal of Infectious Diseases 1969, 119: 237–246.PubMedGoogle Scholar
  6. 6.
    Lanyi B, Lantos J: Antigenic changes inPseudomonas aeruginosa in vivo and after lysogenization in vitro. Acta Microbiologica Hungarica 1976, 23: 337–351.Google Scholar
  7. 7.
    Hancock REW, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB:Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serumsensitive, non-typable strains deficient in lipopolysaccharide O side chains. Infection and Immunity 1983, 42: 170–177.PubMedGoogle Scholar
  8. 8.
    Ojeniyi B, Baek L, Høiby N: Polyagglutinability due to loss of O-antigenic determinants inPseudomonas aeruginosa strains isolated from cystic fibrosis patients. Acta Pathologica Microbiologica Immunologica Scandinavica B 1985, 93: 7–13.Google Scholar
  9. 9.
    Pitt TL: Epidemiological typing ofPseudomonas aeruginosa. European Journal of Clinical Microbiology & Infectious Diseases 1988, 7: 238–247.Google Scholar
  10. 10.
    Denamur E, Picard B, Goullet Ph, Bingen E, Lambert N, Elion J: Complexity ofPseudomonas aeruginosa infection in cystic fibrosis: combined results from esterase electrophoresis and rDNA restriction fragment length polymorphism analysis. Epidemiology and Infection 1991, 106: 531–539.PubMedGoogle Scholar
  11. 11.
    National Committee for Clinical Laboratory Standards: Performance standards for antimicrobial disk susceptibility tests. Approved standard, M2-A3. NCCLS, Villanova, PA, 1984.Google Scholar
  12. 12.
    National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, M7-A. NCCLS, Villanova, PA, 1985.Google Scholar
  13. 13.
    Uriel, J: Méthode d'électrophorèse dans des gels d'acrylamide-agarose. Bulletin de la Société de Chimie Biologique 1966, 48: 969–982.Google Scholar
  14. 14.
    Goullet P, Picard B: A two-dimensional electrophoretic profile for bacterial esterases. Electrophoresis 1985, 6: 132–135.CrossRefGoogle Scholar
  15. 15.
    Goullet P, Picard B:Pseudomonas aeruginosa isolate typing by esterase electrophoresis. FEMS Microbiology Letters 1991, 78: 195–200.CrossRefGoogle Scholar
  16. 16.
    Picard-Pasquier N, Ouagued M, Picard B, Goullet P, Krishnamoorthy R: A simple sensitive method of analyzing bacterial ribosomal DNA polymorphism. Electrophoresis 1989, 10: 186–189.CrossRefPubMedGoogle Scholar
  17. 17.
    Picard B, Goullet P: Epidemiological complexity of hospitalAeromonas infections revealed by electrophoretic typing of esterases. Epidemiology and Infection 1987, 98: 5–14.PubMedGoogle Scholar
  18. 18.
    Lipuma JJ, Fisher MC, Dasen SE, Mortensen JE, Stull TL: Ribotype stability of serial pulmonary isolates ofPseudomonas cepacia. Journal of Infectious Diseases 1991, 164: 133–136.PubMedGoogle Scholar
  19. 19.
    Stull TL, Lipuma JJ, Edlind TD: A broad spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. Journal of Infectious Diseases 1988, 157: 280–286.PubMedGoogle Scholar
  20. 20.
    Speert DP, Gampbell ME, Farmer SW, Volpel K, Joffe AM, Paranchy W: Use of a pilin gene probe to study molecular epidemiology ofPseudomonas aeruginosa. Journal of Clinical Microbiology 1989, 27: 2589–2593.PubMedGoogle Scholar
  21. 21.
    Ogle JW, Janda JM, Woods DE, Vasil ML,: Characterization and use of a DNA probe as an epidemiological marker forPseudomonas aeruginosa. Journal of Infectious Diseases 1987, 155: 119–126.PubMedGoogle Scholar
  22. 22.
    Hjelm LN, Branstrom AA, Warren RL: Detection of restriction fragment length polymorphisms in clinical isolates and serially passagedPseudomonas aeruginosa strains. Journal of Clinical Microbiology 1990, 28: 2178–2182.PubMedGoogle Scholar
  23. 23.
    Bosso JA, Allen JE, Matsen JM: Changing susceptibility ofPseudomonas aeruginosa isolates from cystic fibrosis patients with the clinical use of newer antibiotics. Antimicrobial Agents and Chemotherapy 1989, 33: 526–528.PubMedGoogle Scholar
  24. 24.
    Giwercman B, Lambert PA, Rosdahl V, Shand GH, Høiby N: Rapid emergence of resistance inPseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed β-lactamase producing strains. Journal of Antimicrobial Chemotherapy 1990, 26: 247–259.PubMedGoogle Scholar
  25. 25.
    Ogle JW, Reller LB, Vasil ML: Development of resistance inPseudomonas aeruginosa to imipenem, norfloxacin and ciprofloxacin during therapy: proof provided by typing with a DNA probe. Journal of Infectious Diseases 1988, 157: 743–748.PubMedGoogle Scholar
  26. 26.
    Kaatz GW, Seo SM: Mechanism of ciprofloxacin resistance inPseudomonas aeruginosa. Journal of Infectious Diseases 1988, 158: 537–541.PubMedGoogle Scholar
  27. 27.
    Neu HC: Bacterial resistance to fluoroquinolones. Reviews of Infectious Diseases 1988, 10, Supplement 1: 57–63.Google Scholar
  28. 28.
    Sanders CC, Sanders WE: Microbial resistance to newer generation β-lactam antibiotics: clinical and laboratory implications. Journal of Infectious Diseases 1985, 151: 399–406.PubMedGoogle Scholar
  29. 29.
    Levy J: Antibiotic activity in sputum. Journal of Pediatrics 1986, 108: 841–845.PubMedGoogle Scholar
  30. 30.
    Pasloke BL, Joffre AM, Sun Q, Volpel K, Paranchych W, Eftekhar F, Speert DP: Serial isolates ofPseudomonas aeruginosa from a cystic fibrosis patient have identical pilin sequences. Infection and Immunity 1988, 56: 665–672.PubMedGoogle Scholar
  31. 31.
    Wolz C, Kiosz D, Ogle JW, Vasil ML, Schaad U, Botzenhart K, Döring G:Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis. Use of a DNA probe. Epidemiology and Infection 1989, 102: 205–214.PubMedGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1992

Authors and Affiliations

  • E. Bingen
    • 1
  • E. Denamur
    • 2
  • B. Picard
    • 4
  • P. Goullet
    • 4
  • N. Lambert-Zechovsky
    • 1
  • P. Foucaud
    • 3
  • J. Navarro
    • 3
  • J. Elion
    • 2
  1. 1.Laboratoire de MicrobiologieHôpital Robert DebréParis Cedex 19France
  2. 2.Laboratoire de Biochimie GénétiqueHôpital Robert DebréParis Cedex 19France
  3. 3.Service de GastroentérologieHôpital Robert DebréParis Cedex 19France
  4. 4.Laboratoire de MicrobiologieFaculté Xavier BichatParisFrance

Personalised recommendations