Pharmaceutisch Weekblad

, Volume 5, Issue 3, pp 102–108 | Cite as

Ionization constants of catechols and catecholamines

  • M. T. I. W. Schüsler-Van Hees
  • G. M. J. Beijersbergen Van Henegouwen
  • M. F. J. Driever
Original Articles


Catecholamines can appear in different charged states: as positive, negative and zwitterion and as zero-charged molecule. The microscopic ionization constants of ten catecholamines were determined spectrophotometrically. For each charged state the fraction of total catecholamine at pH=7.85 was calculated from the microscopic ionization constants. Some attention is given to the interpretation of the differences between the fractions of corresponding charged states.


Public Health Internal Medicine Catecholamine Charged State Catechol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, A., andE.P. Serjeant (1962)Ionization constants of acids and bases. Methuen, London, 51–66.Google Scholar
  2. Antikainen, P.J., andU. Witikainen (1973)Acta Chem. Scand. 27, 2075–2082.Google Scholar
  3. Armstrong, J., andR.B. Barlow (1976)Br. J. Pharmacol. 57, 501–516.Google Scholar
  4. Bates, R.G. (1962)J. Research 66A, 179–184.Google Scholar
  5. Creveling, C.R., N. Morris, H. Shimizu, H.H. Ong andJ. Daly (1972)Mol. Pharmacol. 8, 398–406.Google Scholar
  6. Dutch Pharmacopoeia (1978)Ed. VIII, part 1, 309.Google Scholar
  7. Edsall, J.T., R.B. Martin andB.R. Hollingworth (1958)Proc. Natl. Acad. Sci. USA 44, 505–519.Google Scholar
  8. Granot, J. (1976)FEBS Lett. 67, 271–275.Google Scholar
  9. Jameson, R.F., and W.F.S.Neillie (1965)J. Chem. Soc. 2391–2395.Google Scholar
  10. Kappe, T., andM.D. Armstrong (1965)J. Med. Chem. 8, 368–374.Google Scholar
  11. Kiss, T., andA. Gergely (1979)Inorg. Chim. Acta 36, 31–36.Google Scholar
  12. Lewis, G.P. (1954)Br. J. Pharmacol. 9, 488–493.Google Scholar
  13. Mack, F., andH. Bönisch (1979)Naunyn Schmiedebergs Arch. Pharmacol. 310, 1–11.Google Scholar
  14. Martin, R.B. (1971)J. Phys. Chem. 75, 2657–2661.Google Scholar
  15. Perrin, D.D. (1980) In:Physical Properties of Drugs, Medicinal Research Series, vol. 10 (Yalkowsky, S.H., A.A. Sinkula andS.C. Valvani, Eds.). Marcel Dekker Inc., New York, 1–48.Google Scholar
  16. Riegelman, S., L.A. Straib andE.Z. Fischer (1962)J. Pharm. Sci. 51, 129–134.Google Scholar
  17. SAS User's Guide: Statistics (1982)sas institute Inc., Cary,usa, 15–37.Google Scholar
  18. Schüsler-Van Hees, M.T.I.W., andG.M.J. Beijersbergen Van Henegouwen (1980)J. Chromatogr. 196, 101–108;Ibidem (1982)Pharm. Weekbl. [Sci.] 4, 176–182.Google Scholar
  19. Schüsler-Van Hees, M.T.I.W., G.M.J.Beijersbergen Van Henegouwen and P.Stoutenberg (1983) in preparation.Google Scholar
  20. Sinistri, C., andL. Villa (1962)Farmaco [Sci.] 17, 949–973.Google Scholar
  21. Tuckerman, M., J.R. Mayer andF.C. Nachod (1959)J. Am. Chem. Soc. 81, 92–94.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1983

Authors and Affiliations

  • M. T. I. W. Schüsler-Van Hees
    • 1
  • G. M. J. Beijersbergen Van Henegouwen
    • 1
  • M. F. J. Driever
    • 1
  1. 1.Subfaculty of PharmacyState University of Leiden, Gorlaeus LaboratoriesRA LeidenThe Netherlands

Personalised recommendations