Skip to main content

Advertisement

Log in

Multilocus enzyme electrophoresis of major O-antigen reference strains ofPseudomonas aeruginosa

  • Article
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

Multilocus enzyme electrophoresis was used to characterize 27Pseudomonas aeruginosa serogroup reference strains used in the major O-antigen schemes according to whichPseudomonas aeruginosa has been typed. Sixteen enzyme loci were assayed, ten of which showed electrophoretic variation. Genetic diversity was expressed for each enzyme locus, and as the mean allelic diversity of loci. Ten electrophoretic types were identified among the strains. The genetic distance between pairs of electrophoretic types was expressed as the proportion of loci at which similar alleles occurred. More than 80 % similarity was observed between any pair of electrophoretic types, reflecting the homogeneity of multilocus genotypes within this species. Similarity between electrophoretic types was represented in the form of a dendrogram and by multi-dimensional scaling. Three distinct clusters of electrophoretic types were revealed; within each the serogroups appeared to be randomly distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farmer JJ, Weinstein RA, Zierdt CH, Brokopp CD Hospital outbreaks caused byPseudomonas aeruginosa: importance of serogroup O11. Journal of Clinical Microbiology 1982, 6: 266–270.

    Google Scholar 

  2. Griffith SJ, Nathan C, Selander RK, Chamberlin W, Gordon S, Kabins S, Weinstein RA The epidemiology ofPseudomonas aeruginosa in oncology patients in a general hospital. Journal of Infectious Diseases 1989, 6: 1030–1036.

    Google Scholar 

  3. Lanyi B, Bergan T Serological characterization ofPseudomonas aeruginosa. In: Bergan T, Norris JR (ed): Methods in microbiology. Volume 10. Academic Press, New York, 1978, p. 93–168.

    Google Scholar 

  4. Levin MH, Weinstein RA, Nathan C, Selander RK, Ochman H, Kabins SA Association of infection caused byPseudomonas aeruginosa serotype O11 with intravenous abuse of tripelennamine. Journal of Clinical Microbiology 1984, 20: 758–762.

    Google Scholar 

  5. Rostein C, Cummings KM, Nicolaou AL, Lucey J, Fitzpatrick J Nosocomial infection rates at an oncology center. Infection Control and Hospital Epidemiology 1988, 9: 13–19.

    Google Scholar 

  6. Moody MR, Young VM, Kenton DM, Vermeuler GD Pseudomonas aeruginosa in a center for hospital research. I: Distribution of intraspecies types from human and environmental sources. Journal of Infectious Diseases 1977, 125: 95–101.

    Google Scholar 

  7. Selander RK, McKinney RM, Whittam TS, Bibb WF, Brenner DJ, Nolte FS, Pattison PE Genetic structure of populations ofLegionella pneumophila. Journal of Bacteriology 1985, 163: 1021–1037.

    Google Scholar 

  8. Conroy JV, Baltch AL, Smith RP, Hammer MC, Griffin PE Bacteremia due toPseudomonas aeruginosa: use of a combined typing system in an eight-year study. Journal of Infectious Diseases 1983, 148: 603.

    Google Scholar 

  9. Goullet P, Picard B Pseudomonas aeruginosa isolate typing by esterase electrophoresis. FEMS Microbiology Letters 1991, 78: 195–200.

    Google Scholar 

  10. Caugant DA, Levin BR, Selander RK Genetic diversity and temporal variation in theEscherichia coli population of a human host. Genetics 1981, 98: 467–490.

    Google Scholar 

  11. Ochman H, Whittam TS, Caugant DA, Selander RK Enzyme polymorphism and genetic population structure inEscherichia coli andShigella. Journal of General Microbiology 1983, 129: 2715–2726.

    Google Scholar 

  12. Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied Environmental Microbiology 1986, 51: 873–884.

    Google Scholar 

  13. McLellan T Molecular charge and electrophoretic mobility of cetacean myoglobins of known sequence. Biochemical Genetics 1984, 22: 181–200.

    Google Scholar 

  14. Ramshaw JAM, Coyne JA, Lewontin RC The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics 1979, 93: 1019–1037.

    Google Scholar 

  15. Shumaker KM, Allard RW, Kahler AL Cryptic variability at enzyme loci in three plant speciesAvena barbata, Hordeum vulgaris, andZhea mays. Journal of Heredity 1982, 73: 86–90.

    Google Scholar 

  16. Liu PV, Matsumoto H, Kusama H, Bergan T Survey of heatstable major somatic antigens ofPseudomonas aeruginosa. International Journal of Systematic Bacteriology 1983, 3: 256–264.

    Google Scholar 

  17. Habs I: Untersuchungen über die O-Antigene vonPseudomonas aeruginosa. Zeitschrift für Hygiene 1957, 218–228.

  18. Sanvik O The serology ofPseudomonas aeruginosa from bovine udder infections. Acta Veterinaria Scandanavica 1960, 1: 221–228.

    Google Scholar 

  19. Verder E, Evans J A proposed antigenic scheme for the identification of strains ofPseudomonas aeruginosa. Journal of Infectious Diseases 1961, 109: 183–193.

    Google Scholar 

  20. Lanyi B Serological properties ofPseudomonas aeruginosa. I: Group specific somatic antigens. Acta Microbiologica Academiae Scientiarum 1978, 13: 295–318.

    Google Scholar 

  21. Meitert T Contribution a l'etude de la structure antigenique des pyocyaniques(Pseudomonas aeruginosa). Archives Roumaines de Pathologie Experimentale et de Microbiologie 1964, 3: 679–688.

    Google Scholar 

  22. Meitert T, Meitert E Utilisation combinée du serotypage et de la lysotypic des souches dePseudomonas aeruginosa vue d'approfondir les investigations epidemiologiques. Archives Roumaines de Pathologie Experimentale et de Microbiologie 1966, 25: 427–434.

    Google Scholar 

  23. Homma JY Serological typing ofPseudomonas aeruginosa and several points to be considered. Japanese Journal of Experimental Medicine 1974, 44: 1–12.

    Google Scholar 

  24. Homma JY A new antigenic scheme and live-cell slide agglutination procedure for the infrasubspecific serologic classification ofPseudomonas aeruginosa. Japanese Journal of Experimental Medicine 1976, 46: 329–336.

    Google Scholar 

  25. Wahba AH Hospital infection withPseudomonas pyocanea: an investigation by a combined pyocine and serological typing method. British Medical Journal 1965, 1: 86–89.

    Google Scholar 

  26. Siem TH Het typeren vanPseudomonas aeruginosa met behulp van een gecombineerde sero-pyocinetype rings method. PhD Thesis, University of Amsterdam, Amsterdam 1972.

    Google Scholar 

  27. Veron M Sur l'agglutination desPseudomonas aeruginosa; subdivision des groupes antigeniques O:2 et O:5. Annales de l'Institut Pasteur 1961, 101: 456–460.

    Google Scholar 

  28. Nei M F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics 1977, 41: 225–233.

    Google Scholar 

  29. Bray JR, Curtis JT An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs 1957, 27: 325–349.

    Google Scholar 

  30. Dixon TP, Webb C Enzyme specificity. In: Dixon TP, Webb C (ed): The enzymes. Longman Group, London, 1979, p. 251–254.

    Google Scholar 

  31. Denny TP, Gilmour MN, Selander RK Genetic diversity and relationships of two pathovars ofPseudomonas syringae. Journal of General Microbiology 1988, 134: 1949–1960.

    Google Scholar 

  32. Holloway BW, Krishnapillai V, Morgan AF Chromosomal genetics ofPseudomonas. Microbiological Reviews 1979, 43: 73–102.

    Google Scholar 

  33. Watson JM, Holloway BW Chromosome mapping inPseudomonas aeruginosa. Journal of Bacteriology 1978, 133: 1113–1125.

    Google Scholar 

  34. Royle PL, Matsumoto N, Holloway BW Genetic circularity of thePseudomonas aeruginosa PAO chromosome. Journal of Bacteriology 1981, 145: 145–155.

    Google Scholar 

  35. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff Nucleic acid homologies in the genusPseudomonas. International Journal of Systematic Bacteriology 1973, 23: 333–339.

    Google Scholar 

  36. Ambler RP The evolutionary stability of cytochrome c-511 inPseudomonas aeruginosa andPseudomonas flourescens biotype C. Biochemical Journal 1974, 137: 3–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charnock, C., Bergan, T. Multilocus enzyme electrophoresis of major O-antigen reference strains ofPseudomonas aeruginosa . Eur. J. Clin. Microbiol. Infect. Dis. 11, 810–816 (1992). https://doi.org/10.1007/BF01960880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01960880

Keywords

Navigation