Pharmaceutisch Weekblad

, Volume 9, Issue 2, pp 85–90 | Cite as

Variability in drug metabolism: importance of genetic constitution

  • J. H. M. Schellens
  • D. D. Breimer
Pharmacokinetics and Organ Dysfunction

Abstract

In man wide variability exists in the rate of metabolism of drugs and among factors which contribute to this phenomenon genetic constitution is of major importance. The metabolism of a number of drugs is subject to polymorphism and the frequency distribution of particular pharmacokinetic parameters shows bimodality, with poor (PM) and extensive metabolizers (EM). Acetylation of a number of drugs is known to be polymorphic and the incidence of poor metabolizers varies markedly among different populations. Debrisoquine and sparteine are frequently applied model substrates for the characterization of a polymorphism in oxidative metabolism. Polymorphic drug oxidation may have important clinical implications, because when standard dosage regimens are applied plasma concentrations will reach far above the maximum acceptable in poor metabolizers and consequently side effects may arise. Regarding the multiplicity of the drug oxidizing enzyme system (cytochrome P-450) it could be of interest to combine model substrates in a cocktail to be able to characterize human subjects simultaneously for a number of independent polymorphisms.

Key words

Cytochrome P-450 Debrisoquine Isoenzymes Metabolism Pharmacokinetics Polymorphism (genetics) Sparteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breimer DD, Danhof M. Interindividual differences in pharmacokinetics and drug metabolism. In: Breimer DD, ed. Towards better safety of drugs and pharmaceutical products. Amsterdam: Elsevier/North Holland Biomedical Press, 1980:117–41.Google Scholar
  2. 2.
    Sjöqvist F, Von Bahr Ch: Interindividual differences in drug oxidation: clinical importance. Drug Metab Dispos 1973;1:469–82.Google Scholar
  3. 3.
    Holford NHG, Sheiner LB. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet 1981;6:429–53.Google Scholar
  4. 4.
    Meyer UA, Gut J, Kronbach T, et al. The molecular mechanism of two common polymorphisms of drug oxidation — evidence for functional changes in cytochrome P-450 isozymes catalysing bufuralol and mephenytoin oxidation. Xenobiotica 1986;16:449–65.Google Scholar
  5. 5.
    Eichelbaum M. Defective oxidation of drugs: pharmacokinetic and therapeutic implications. Clin Pharmacokinet 1982;7:1–22.Google Scholar
  6. 6.
    Jackson PR, Tucker GT, Lennard MS, Woods HF. Polymorphic drug oxidation: pharmacokinetic basis and comparison of experimental indices. Br J Clin Pharmacol 1986;22:541–50.Google Scholar
  7. 7.
    Tiitinen H. Isoniazid and ethionamide serum levels and inactivation in Finnish subjects. Scand J Respir Dis 1969;50:110–24.Google Scholar
  8. 8.
    Price Evans DA, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. Br Med J 1960;2:485–91.Google Scholar
  9. 9.
    Price Evans DA, Mahgoub A, Sloan TP, Idle JR, Smith RL. A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet 1980; 17:102–5.Google Scholar
  10. 10.
    Küpfer A, Desmond P, Schenker S, Branch R. Family study of a genetically determined deficiency of mephenytoin hydroxylation in man [Abstract]. Pharmacologist 1979;21:173.Google Scholar
  11. 11.
    Vasko MR, Bell RD, Daly DD, Pippenger CE. Inheritance of phenytoin hypometabolism: a kinetic study of one family. Clin Pharmacol Ther 1980;27:96–103.Google Scholar
  12. 12.
    McGourty JC, Silas JH, Lennard MS, Tucker GT, Woods HF. Metoprolol metabolism and debrisoquine oxidation polymorphism — population and family studies. Br J Clin Pharmacol 1985;20:555–66.Google Scholar
  13. 13.
    Kalow W. Ethnic differences in drug metabolism. Clin Pharmacokinet 1982;7:373–400.Google Scholar
  14. 14.
    Weber WW, Hein DW.N-acetylation pharmacogenetics. Pharmacol Rev 1985;37:25–79.Google Scholar
  15. 15.
    Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977;2:584–6.Google Scholar
  16. 16.
    Gut J, Gasser R, Dayer P, Kronbach T, Catin T, Meyer UA. Debrisoquine-type polymorphism of drug oxidation: purification from human liver of a cytochrome P-450 isozyme with high activity for bufuralol hydroxylation. Fed Eur Biochem Soc 1984;173:287–90.Google Scholar
  17. 17.
    Schellens JHM, Van der Wart JHF, Breimer DD. Mephenytoin polymorphism in relation to methylphenytoin, phenytoin and phenobarbital hydroxýlation [Abstract]. Clin Pharmacol Ther 1987;41:158.Google Scholar
  18. 18.
    Küpfer A, Preisig R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 1984;26:753–9.Google Scholar
  19. 19.
    Küpfer A, Branch RA. Stereoselective mephobarbital hydroxylation cosegregates with mephenytoin hydroxylation. Clin Pharmacol Ther 1985;38:414–8.Google Scholar
  20. 20.
    Vermeij P, Ferrari MD, Buruma OJS, De Wolff FA. Phenytoin parahydroxylation polymorphism in a Dutch family [Abstract]. Féderation Internationale Pharmaceutique Montreal, Canada, Sept. 1985.Google Scholar
  21. 21.
    Kleinbloesem CH, Van Brummelen P, Faber H, Danhof M, Vermeulen NPE, Breimer DD. Variability in nifedipine pharmacokinetics and dynamics: a new oxidation polymorphism in man. Biochem Pharmacol 1984;33:3721–4.Google Scholar
  22. 22.
    Eichelbaum M, Woolhouse NM. Inter-ethnic difference in sparteine oxidation among Ghanaians and Germans. Eur J Clin Pharmacol 1985;28:79–83.Google Scholar
  23. 23.
    Iyun AO, Lennard MS, Tucker GT, Woods HF. Metoprolol and debrisoquine metabolism in Nigerians: lack of evidence for polymorphic oxidation. Clin Pharmacol Ther 1986;40:387–94.Google Scholar
  24. 24.
    Bertilsson L, Dengler HJ, Eichelbaum M, Schulz HU. Pharmacogenetic covariance of defectiveN-oxidation of sparteine and 4-hydroxylation of debrisoquine. Eur J Clin Pharmacol 1980;17:153–5.Google Scholar
  25. 25.
    Küpfer A. Genetic differences of drug metabolism in man: polymorphic drug oxidation. In: Siest G, ed. Drug metabolism — Molecular approaches and pharmacological implications. Oxford: Pergamon Press, 1985; 25–33.Google Scholar
  26. 26.
    Eichelbaum M, Reetz KP, Schmidt EK, Zekorn C. The genetic polymorphism of sparteine metabolism. Xenobiotica 1986;16:465–83.Google Scholar
  27. 27.
    Distlerath LM, Reilly PEB, Martin MV, Davis GG, Wilkinson GR, Guengerieh FP. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J Biol Chem 1985;260:9057–67.Google Scholar
  28. 28.
    Shimada T, Misono KS, Guengerich FP. Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism: purification and characterization of two similar forms involved in the reaction. J Biol Chem 1986;261:909–22.Google Scholar
  29. 29.
    Dayer P, Gasser R, Gut J, et al. Characterization of a common genetic defect of cytochrome P-450 function (debrisoquine-sparteine type polymorphism) — Increased Michaelis constant (xK m) and loss of stereoselectivity of bufuralol 1′-hydroxylation in poor metabolizers. Biochem Biophys Res Commun 1984;125:374–80.Google Scholar
  30. 30.
    Lewis RV, Jackson PR, Ramsay LE. Pharmacokinetics and pharmacodynamics of nifedipine and debrisoquine oxidation phenotype. Br J Clin Pharmacol 1984;17:562p.Google Scholar
  31. 31.
    De Wolff FA, Vermeij P, Ferrari MD, Buruma OJS, Breimer DD. Impairment of phenytoin parahydroxylation as a cause of severe intoxication. Ther Drug Monit 1983;5:213–5.Google Scholar
  32. 32.
    Lennard MS, Tucker GT, Silas JH, Woods HF. Debrisoquine polymorphism and the metabolism and action of metoprolol, timolol, propranolol and atenolol. Xenobiotica 1986;16:435–49.Google Scholar
  33. 33.
    Lunde PKM, Frislid K, Hansteen V. Disease and acetylation polymorphism. Clin Pharmacokinet 1977;2:182–97.Google Scholar
  34. 34.
    Breimer DD, Schellens JHM. The use of urinary metabolites of substrate probes to assess drug metabolism capacity in humans. Acta Pharmacol Toxicol 1986;59(suppl 5):252.Google Scholar
  35. 35.
    Danhof M. Antipyrine metabolite profile as a tool in the assessment of the activity of different drug oxidizing enzymes in man. Leiden: State University of Leiden, 1980. Dissertation.Google Scholar
  36. 36.
    Teunissen MWE. Factors and conditions affecting antipyrine clearance and metabolite formation. Leiden: State University of Leiden, 1984. Dissertation.Google Scholar
  37. 37.
    Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. DefectiveN-oxidation of sparteine in man. Eur J Clin Pharmacol 1979;16:183–7.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1987

Authors and Affiliations

  • J. H. M. Schellens
    • 1
  • D. D. Breimer
    • 1
  1. 1.Center for Bio-Pharmaceutical Sciences, Division of PharmacologyState University of LeidenRA LeidenThe Netherlands

Personalised recommendations