Periodica Mathematica Hungarica

, Volume 22, Issue 3, pp 153–160 | Cite as

On the module of homomorphisms on finitely generated multiplication modules II.

  • A. G. Naoum
  • B. Al-Hashimi
  • J. R. Kider

Mathematics subject classification numbers, (1980)

Primary 13F05 Secondary 13B20 

Key words and phrases

Multiplication module projective module flat module Noetherian module Artinian module module of homomorphisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. D.Barnard, Multiplication modules,J. of Algebra 71 (1981), 174–178.MR 82k:13008Google Scholar
  2. [2]
    N.Jacobson, Basic Algebra II, W.H. Freeman and Company, San Francisco, 1980.MR 81g:00001Google Scholar
  3. [3]
    F.Mehdi, On multiplication modules,Math. Student 42 (1974), 149–153.MR 53:2919Google Scholar
  4. [4]
    A. G.Naoum, On hte dual of a finitely generated multiplication module II,Beitr. Algebra Geom. 27 (1988), 83–88.Google Scholar
  5. [5]
    A. G.Naoum, On the product of a module by an ideal,Beitr. Algebra Geom. 27 (1988), 153–159.Google Scholar
  6. [6]
    A. G.Naoum, M.A.K.Hasan, The residual of finitely generated multiplication modules,Arch. Math,46 (1986), 225–230.MR 87j:13009Google Scholar
  7. [7]
    A. G. Naoum, A. Mahmood, F. H. Al-Alwan, On projective and flat modules,Arab J. Math. 7 (1986).Google Scholar
  8. [8]
    A. G.Naoum, B. A.Al-Hashimi, J. R.Kider, On the module of homomorphisms on finitely generated multiplication modules, I,Period. Math. Hungar. 22 (1991), 97–105.Google Scholar
  9. [9]
    P. F. Smith, Some remarks on multiplication modules, To appearArch. Math. Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • A. G. Naoum
    • 1
  • B. Al-Hashimi
    • 1
  • J. R. Kider
    • 1
  1. 1.Department of Mathematics College of ScienceUniversity of BaghdadBaghdadIRAQ

Personalised recommendations