Periodica Mathematica Hungarica

, Volume 22, Issue 3, pp 147–151 | Cite as

On the Radon-Nikodym property for operator valued measures

  • Fiedel J. Fernández
  • P. Jiménez Guerra


A theorem about the Radon-Nikodym property and the convergence of bounded martingales is proved for a bilinear integral in locally convex spaces.

Mathematics subject classification numbers, 1980/1985

Primary 28B05 Secondary 46G10 

Key words and phrases

Operator valued measures Radon-Nikodym property bounded and convergent martingales controlled measures locally convex spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.Balbás, P. JiménezGuerra, Un teorema de Radon-Nikodym para integrales bilineales (A Radon-Nikodym theorem for bilinear integrals),Rev. R. Acad. Ci. Madrid 78 (1984) 217–220.MR 87b: 46048Google Scholar
  2. [2]
    A.Balbás, P. JiménezGuerra, A Radon-Nikodym theorem for a bilinear integral in locally convex spaces,Math. Japonica 32 (1987) 863–870.MR 89f: 46096Google Scholar
  3. [3]
    R. G.Bartle, A general bilinear vector integral,Studia Math. 15 (1956) 337–352.MR 18, 289Google Scholar
  4. [4]
    J. Diestel, J. J. Uhl, Vector measures,Math. Surveys 15 Providence R. I., 1977,MR 56: 12216Google Scholar
  5. [5]
    I.Dobrakov, On integration in Banach spaces, I,Czech. Math. J. 20 (1970) 511–536.MR 51: 1391Google Scholar
  6. [6]
    F. J. Fernández Fernández-Arroyo, producto de medidas valoradas en espacios localmente convexos (Product of measures with values in locally convex spaces),Ph. D. Thesis. U. N. E. D. Madrid, 1987.Google Scholar
  7. [7]
    P. JiménezGuerra, Derivación de medidas e integración vectorial bilinear, (Derivation of measures and bilinear vectorial integration),Rev. R. Acad. Ci. Madrid82 (1988) 115–128.Google Scholar
  8. [8]
    H. B.Maynard, A Radon-Nikodym theorem for operator valued measures,Trans. Amer. Math. Soc. 173 (1972) 449–463.MR 46: 9289Google Scholar
  9. [9]
    R. RaoChivukula, A. S.Sastry, Product vector measures via Bartle integrals,J. Math. Anal. Appl. 96 (1983) 180–195.MR 85h: 28007Google Scholar
  10. [10]
    S. Rodríguez Salazar, Integración general en espacios localmente convexos,Ph. D. Thesis. Madrid 1985.Google Scholar
  11. [11]
    B.Rodríguez-Salinas, Integración de funciones con valores en un espacio localmente convexo,Rev. R. Acad. Ci. Madrid 73 (1979) 361–387.MR 82i: 46061Google Scholar
  12. [12]
    B.Rodríguez-Salinas, La propiedad de Radon-Nikodym, δ-dentabilidady martingalas en espacios localmente convexos (The Radon-Nikodym property, δ-dentability and martingales in locally convex spaces),Rev. R. Acad. Ci. Madrid 74 (1980) 65–89.MR 82i: 46063Google Scholar
  13. [13]
    S. A. Sivasankara, Vector integrals and product of vector measures,Ph. D. Thesis. Univ. Microfilm Inter. Michigan (1983).Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • Fiedel J. Fernández
    • 1
  • P. Jiménez Guerra
    • 1
  1. 1.Departamento de Matemáticas FundamentalesFacultad de Ciencias U. N. E. D.Madrid(Spain)

Personalised recommendations