, Volume 44, Issue 1, pp 74–76 | Cite as

Occurrence of retinal and 3-hydroxyretinal in a possible photoreceptor of the silkworm brain involved in photoperiodism

  • K. Hasegawa
  • I. Shimizu
Short Communications


Deficiency of dietary carotenoid and vitamin A caused an absence of photoperiodic response of diapause induction in the silkworm,Bombyx mori, and an addition of vitamin A to the diet restored the response. By high pressure liquid chromatography (HPLC) a possible photoperiodic receptor of the silkworm brain was found to contain both retinal and 3-hydroxyretinal which are chromophores of insect visual pigments. These pieces of evidence suggest that a retinoid protein might function in the photoperiodic response of the silkworm.

Key words

Photoperiodism diapause vitamin A retinal 3-hydroxyretinal brain Bombyx mori 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williams, C. M., and Adkisson, P. L., Biol. Bull.127 (1964) 511.Google Scholar
  2. 2.
    Claret, J., Ann. Endocr. (Paris)27 (1966) 311.Google Scholar
  3. 3.
    Kono, Y., Jap. J. appl. Ent. Zool.17 (1973) 203.Google Scholar
  4. 4.
    Seuge, J., and Veith, K., J. Insect Physiol.22 (1976) 1229.Google Scholar
  5. 5.
    Bowen, M. F., Saunders, D. S., Bollenbacher, W. E., and Gilbert, L. I., Proc. natl Acad. Sci. USA81 (1984) 5881.PubMedGoogle Scholar
  6. 6.
    Lees, A. D., J. exp. Biol.41 (1964) 119.Google Scholar
  7. 7.
    Lees, A. D., J. Insect Physiol.11 (1981) 761.CrossRefGoogle Scholar
  8. 8.
    Adams, A. J., J. Insect Physiol.32 (1986) 71.CrossRefGoogle Scholar
  9. 9.
    Van Zon, A. Q., Overmeer, W. P. J., and Veerman, A., Science213 (1981) 1131.Google Scholar
  10. 10.
    Veerman, A., Overmeer, W. P. J., van Zon, A. W., de Boer, J. M., de Waard, E. R., and Huisman, H. O., Nature302 (1983) 248.CrossRefGoogle Scholar
  11. 11.
    Veerman, A., and Helle, W., Nature275 (1978) 234.Google Scholar
  12. 12.
    Veerman, A., Physiol. Ent.5 (1980) 291.Google Scholar
  13. 13.
    Takeda, M., Ph. D. Thesis, Univ. Missouri 1978.Google Scholar
  14. 14.
    Shimizu, I., and Kato, M., Photobiochem. Photobiophys.7 (1984) 47.Google Scholar
  15. 15.
    Veerman, A., Slagt, M. E., Alderliste, M. F. K., and Veenendaal, R. L., Experientia41 (1985) 1194.CrossRefGoogle Scholar
  16. 16.
    Vogt, K., Z. Naturforsch.38c (1983) 329.Google Scholar
  17. 17.
    Vogt, K., and Kirschfeld, K., Naturwissenschaften71 (1984) 211.CrossRefGoogle Scholar
  18. 18.
    Vogt, K., Z. Naturforsch.39c (1984) 196.Google Scholar
  19. 19.
    Tanimura, T., Isono, K., and Tsukahara, Y., Photochem. Photobiol.43 (1986) 225.Google Scholar
  20. 20.
    Shimizu, I., J. Insect Physiol.28 (1982) 841.CrossRefGoogle Scholar
  21. 21.
    Hasegawa, K., and Shimizu, I., J. Insect Physiol. (1987) in press: Using isolated brain-subesophageal ganglion complex of the silkworm, in vivo and in vitro photoperiodic induction of diapause were performed, and it was demonstrated that components (photoreceptor, clock, and counter) of the photoperiodic clock are located in the brain.Google Scholar
  22. 22.
    Shimizu, I., Kitabatake, S., and Kato, M., J. Insect Physiol.17 (1981) 593.CrossRefGoogle Scholar
  23. 23.
    Suzuki, T., and Makino-Tasaka, M., Analyt. Biochem.129 (1983) 111.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1988

Authors and Affiliations

  • K. Hasegawa
    • 1
  • I. Shimizu
    • 1
  1. 1.Research Section of Environmental Biology, Laboratory for Plant Ecological Studies, Faculty of ScienceKyoto UniversityKyotoJapan

Personalised recommendations