Czechoslovak Journal of Physics B

, Volume 35, Issue 8, pp 873–882 | Cite as

Superlinearity of current-voltage characteristics of oxidized cholesterol bilayer membranes

  • E. Brynda
  • L. Nešpůrková
  • S. Nešpůrek
Article

Abstract

Current-voltage characteristics of bilayer oxidized cholesterol membranes were measured in 0·1 M KCl solution. The ohmic conductance was (5±3) × 10−4Ω−1 m−2. To explain the superlinearity of the characteristics, a model of the ion transport through transient pores was used. Alternative diffusion barrier models could also explain the nonlinearity, but the distribution coefficients of permeable ions between the membrane hydrocarbon phase and the aqueous phase had to be taken unreasonably high.

Keywords

Cholesterol Hydrocarbon Aqueous Phase Distribution Coefficient Diffusion Barrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    De Levie R., Seidah N. G., Moreira H.: J. Membrane Biol.10 (1972) 171.CrossRefGoogle Scholar
  2. [2]
    Läuger P., Neumcke B.:in Membranes V. 2, Lipid Bilayers and Antibiotics. Chap 1, (ed. G. Eisenman), Marcel Dekker, Inc., New York, 1973.Google Scholar
  3. [3]
    Tien H. T.: J. Phys. Chem.72 (1968) 4512.CrossRefGoogle Scholar
  4. [4]
    Tien H. T.: Bilayer Lipid Membranes (BLM), Theory and Practice, Marcel Dekker, Inc., New York, 1974.Google Scholar
  5. [5]
    Mueller P., Rudin D. O., Tien H. T., Wescott W. V.:in Recent Progress in Surface Science. Vol. 1, (ed. J. F. Danielli), Academic Press, Inc., New York, London, 1964.Google Scholar
  6. [6]
    Abidor I. G., Arakelyan V. B., Chernomordik L. V., Chizmadzhev Yu. A., Pastushenko V. F., Tarasevich M. R.: Bioelectrochemistry and Bioenergetics6 (1979) 37.CrossRefGoogle Scholar
  7. [7]
    Robinson R. A., Stokes R. H.: Electrolytic Solutions, Butterworths, London, 1959, p. 468.Google Scholar
  8. [8]
    Parsegian V. A.: Ann. N. Y. Acad. Sci.264 (1975) 161.Google Scholar
  9. [9]
    Neumcke B., Walz D., Läuger P.: Biophys. J.10 (1970) 172.Google Scholar
  10. [10]
    Kauffman J. W., Mead C. A.: Biophys. J.10 (1970) 1089.Google Scholar
  11. [11]
    Walz D., Bamberg E., Läuger P.: Biophys. J.9 (1969) 1150.PubMedGoogle Scholar
  12. [12]
    Neumcke B., Läuger P.: Biophys. J.9 (1969) 1160.PubMedGoogle Scholar
  13. [13]
    Tien H. T., Carbone S., Dawidowicz E. A.: Nature212 (1966) 718.Google Scholar
  14. [14]
    Tien H. T., Diana A. L.: Nature215 (1967) 1199.PubMedGoogle Scholar
  15. [15]
    Harned H. S., Owen B. B.: Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corporation, New York, 1958, p. 217.Google Scholar
  16. [16]
    Yoshida M., Clark A. F., Swanson P. D.: J. Membrane Sci.7 (1980) 101.CrossRefGoogle Scholar
  17. [17]
    Smith J. R., Laver D. R., Coster H. G. L.: Chem. Phys. Lipids7 (1984) 227.CrossRefGoogle Scholar
  18. [18]
    Onsager L.: Phys. Rev.54 (1938) 554.CrossRefGoogle Scholar
  19. [19]
    Debye P.: Trans. Electrochem. Soc.82 (1942) 265.Google Scholar
  20. [20]
    Mott N. F., Gurney R. W.: Electronic Processes in Ionic Crystals, Oxford University Press, London, 1940, p. 42.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1985

Authors and Affiliations

  • E. Brynda
    • 1
  • L. Nešpůrková
    • 2
  • S. Nešpůrek
    • 1
  1. 1.Institute of Macromolecular ChemistryCzechosl. Acad. Sci.Praha 6Czechoslovakia
  2. 2.Institute of MicrobiologyCzechosl. Acad. Sci.Praha 4Czechoslovakia

Personalised recommendations