Advertisement

European Journal of Pediatrics

, Volume 151, Issue 11, pp 821–826 | Cite as

Molecular detection of genetic defects in congenital adrenal hyperplasia due to 21-hydroxylase deficiency: A study of 27 families

  • D. Strumberg
  • B. P. Hauffa
  • B. Horsthemke
  • H. Grosse-Wilde
Medical Genetics

Abstract

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase (21-OHase) deficiency is inherited as an autosomal recessive trait. Patients can present with the salt wasting, simple virilizing or a non-classical form of the disease. The gene for P450C21, the enzyme carrying 21-OHase activity, has been mapped to the major histocompatibility complex on chromosome 6p. Using molecular hybridisation techniques we have studied the genetic defect in 27 families with one or more affected off-spring diagnosed and treated at the University Hospital of Essen. DNA samples were digested with restriction endonucleaseTaqI,PvuII,BglII, andEcoRI and analysed by Southern blot hybridisation with the cDNA probe pC21/3c. Eleven of 40 haplotypes associated with the salt wasting form were found to have a large deletion of 30 kb affecting the 5′ end of the active 21-OHase gene and the 3′ end of the closely linked pseudogene. Results in another 11 cases are compatible with gene conversion; 18 cases were not informative. The 30 kb deletion was associated with a combination of the HLA antigens Bw47 and DR7 in 7 of 11 cases. In the haplotypes with gene conversion, no linkage disequilibrium to HLA antigens was found. No apparent gene alterations were detected in simple virilizing and non-classical haplotypes. The direct detection of the genetic defect in 55% of the salt wasting haplotypes may help to improve predictive testing in families with CAH.

Key words

21-Hydroxylase deficiency Molecular genetics Restriction patterns Major histocompatibility complex class III genes 

Abbreviations

CAH

congenital adrenal hyperplasia

MHC

major histocompatibility complex

NC

non-classical forms

21-OHase

21-hydroxylase

17-OHP

17-hydroxyprogesterone

SV

simple virilising form

SW

salt wasting

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aston CE, Sherman SL, Morton NE, Speiser PW, New MI (1988) Genetic mapping of the 21-hydroxylase locus: estimation of small recombination frequencies. Am J Hum Genet 43:304–310PubMedGoogle Scholar
  2. 2.
    Carroll MC, Campbell RD, Porter RR (1985) Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man. Proc Natl Acad Sci USA 82:521–525PubMedGoogle Scholar
  3. 3.
    Carroll MC, Palsdottir A, Belt KT, Porter RR (1985) Deletion of complement C4 and steroid 21-hydroxylase genes in the HLA class III region. EMBO J 4:2547–2552PubMedGoogle Scholar
  4. 4.
    Collier S, Sinnott PJ, Dyer PA, Price DA, Harris R, Strachan T (1989) Pulsed field gel electrophoresis identifies a high degree of variability in the number of tandem 21-hydroxylase and complement C4 gene repeats in 21-hydroxylase deficiency haplotypes. EMBO J 8:1393–1402PubMedGoogle Scholar
  5. 5.
    Donohoue PA, Jospe N, Migeon CJ, McLean RH, Bias WB, White PC, Van Dop C (1986) Restriction maps and restriction fragment length polymorphisms of the human 21-hydroxylase genes. Biochem Biophys Res Commun 136:722–729CrossRefPubMedGoogle Scholar
  6. 6.
    Donohoue PA, Van Dop C, Migeon CJ, McLean RH, Bias WB (1987) Coupling of HLA-A3, Cw6,Bw47,DR7 and a normal CA21HB steroid 21-hydroxylase gene in the old order Amish. J Clin Endocrinol Metab 65:980–986PubMedGoogle Scholar
  7. 7.
    Donohoue PA, Jospe N, Migeon CJ, Van Dop C (1989) Two distinct areas of unequal crossingover within the steroid 21-hydroxylase genes produce absence of CYP21B. Genomics 5: 397–406CrossRefPubMedGoogle Scholar
  8. 8.
    Doxiadis G, Doxiadis I, Frenz G, Vögeler U, Grosse-Wilde H (1989) Relevance of complotyping and subtyping of MHC class I gene products in haplotype definition for allogeneic marrow transplantation. Bone Marrow Transplant 4:17–22PubMedGoogle Scholar
  9. 9.
    Dupont B, Oberfield SE, Smithwick EM, Lee TD, Levine LS (1977) Close genetic linkage between HLA and congenital adrenal hyperplasia (21-hydroxylase deficiency). Lancet II:1309–1312CrossRefGoogle Scholar
  10. 10.
    Garlepp MJ, Wilton AN, Dawkins RL, White PC (1986) Rearrangement of 21-hydroxylase genes in disease-associated MHC supratypes. Immunogenetics 23:100–105CrossRefPubMedGoogle Scholar
  11. 11.
    Grosse-Wilde H, Weil J, Albert ED, Scholz S, Bidlingmaier F, Sippel WG, Knorr D (1979) Genetic linkage studies between congenital adrenal hyperplasia and the HLA blood group system. Immunogenetics 8:41–49CrossRefGoogle Scholar
  12. 12.
    Grosse-Wilde H, Valentine-Thon E, Vögeler U, Passarge E, Lorenzen F, Sippel EG, Bidlingmaier F, Knorr D (1988) HLA-A,B,C,DR typing and 17-OHP determination for second trimester prenatal diagnosis of 21-hydroxylase deficient CAH. Prenat Diagn 8:131–143PubMedGoogle Scholar
  13. 13.
    Harada F, Kimura A, Iwanaga T, Shimozawa K, Yata J, Sasazuki T (1987) Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia. Proc Natl Acad Sci USA 84:8091–8094PubMedGoogle Scholar
  14. 14.
    Higashi Y, Yoshioka H, Yamane M, Gotoh O, Fujii-Kuriama Y (1986) Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: A pseudogene and a genuine gene. Proc Natl Acad Sci USA 83:2841–2845PubMedGoogle Scholar
  15. 15.
    Higashi Y, Tanae A, Inoue H, Hiromasa T, Fujii-Kuriyama Y (1988) Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450c21) deficiency in humans: possible gene conversion products. Proc Natl Acad Sci USA 85:7486–7490PubMedGoogle Scholar
  16. 16.
    Higashi Y, Tanae A, Inoue H, Fujii-Kuriyama Y (1988) Evidence for frequent gene conversions in the steroid 21-hydroxylase (P450c21) gene: implications for steroid 21-hydroxylase deficiency. Am J Hum Genet 42:17–25PubMedGoogle Scholar
  17. 17.
    Horsthemke B, Greger V, Barnert HJ, Höpping W, Passarge E (1987) Detection of submicroscopic deletions and a DNA polymorphism at the retinoblastoma locus. Hum Genet 76: 257–261CrossRefPubMedGoogle Scholar
  18. 18.
    Jospe N, Donohoue PA, Van Dop C, McLean RH, Bias W, Migeon CJ (1987) Prevalence of polymorphic 21-hydroxylase gene (CA21HB) mutations in salt-losing congenital adrenal hyperplasia. Biochem Biophys Res Commun 142:798–804CrossRefPubMedGoogle Scholar
  19. 19.
    Jospe N, Donohoue PA, Van Dop C, Migeon CJ (1988) Crossing-over sites within the 21-hydroxylase (CYP21) genes causing salt-losing congenital adrenal hyperplasia (CAH) (abstract). Pediatr Res 23:279AGoogle Scholar
  20. 20.
    Killeen AA, Sane KS, Orr HT (1991) Molecular and endocrine characterization of a mutation involving a recombination between the steroid 21-hydroxylase functional gene and pseudogene. J Steroid Biochem Mol Biol 38(6):677–686CrossRefPubMedGoogle Scholar
  21. 21.
    Kochhan L, Janssen S, Knorr D, Olek K, Bidlingmaier F (1990) HLA class I-, complement C4- and 21-hydroxylase probes in the genetic analysis of 21-hydroxylase deficiency. J Clin Chem Clin Biochem 28(6):413–417PubMedGoogle Scholar
  22. 22.
    Matteson KJ, Phillips JA III, Miller WL, Chung B, Orlando PJ, Frisch H, Ferrandes A, Burr IM (1987) P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia. Proc Natl Acad Sci USA 84:5858–5862PubMedGoogle Scholar
  23. 23.
    Miller WL (1988) Gene conversions, deletions and polymorphism in congenital adrenal hyperplasia. Am J Hum Genet 42:4–7PubMedGoogle Scholar
  24. 24.
    Miller WL, Levine LS (1987) Molecular and clinical advances in congenital adrenal hyperplasia. J Pediatr 111:1–17PubMedGoogle Scholar
  25. 25.
    Morel Y, Andre J, Uring-Lambert B, Hauptmann G, Betuel H, Tosi M, Forest MG, David M, Bertrand J, Miller WL (1989) Rearrangement and point mutations of P450c21 genes are distinguished by five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia. J Clin Invest 83:527–536PubMedGoogle Scholar
  26. 26.
    O'Neill GJ (1985) C4 polymorphism: use of monoclonal antibody to distinguish between C4A and C4B locus products. Vox Sang 47:362–365Google Scholar
  27. 27.
    Owerbach D, Crawford YM, Draznin MB (1990) Direct analysis of CYP21B genes in 21-hydroxylase deficiency using polymerase chain reaction amplification. Mol Cell Endocrinol 4 (1):125–131Google Scholar
  28. 28.
    Partanen J, Koskimies S, Sipila I, Lisanen V (1989) Major histocompatibility complex gene markers and restriction fragment analysis of steroid 21-hydroxylase (CYP21) and complement C4 genes in classical congenital adrenal hyperplasia patients in a single population. Am J Hum Genet 44:660–670PubMedGoogle Scholar
  29. 29.
    Peter M, Sippell WG, Lorenzen F, Willig RP, Westphal E, Grosse-Wilde H (1990) Improved test to identify heterozygotes for congenital adrenal hyperplasia without index case examination. Lancet 335:1296–1299CrossRefPubMedGoogle Scholar
  30. 30.
    Rodrigues NR, Dunham I, Yu CA, Carroll MC, Porter RR, Campbell RD (1987) Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia. EMBO J 6:1653–1661PubMedGoogle Scholar
  31. 31.
    Rumsby G, Carroll MC, Porter RR, Grant DB, Hjelm M (1986) Deletion of the steroid 21-hydroxylase and complement C4 genes in congenital adrenal hyperplasia. J Med Genet 23:204–209PubMedGoogle Scholar
  32. 32.
    Schneider PM, Carroll MC, Alper CA, Rittner C, Whitehead AS, Yunis EJ, Colten HR (1986) Polymorphism of the human complement C4 and steroid 21-hydroxylase genes. J Clin Invest 78:650–657PubMedGoogle Scholar
  33. 33.
    Terasaki PI, McClelland JD (1964) Microdroplet assay of human cytotoxins. Nature 204:998–1000Google Scholar
  34. 34.
    White PC, New MI, Dupont B (1984) HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P450 specific for steroid 21-hydroxylation. Proc Natl Acad Sci USA 81:7505–7509PubMedGoogle Scholar
  35. 35.
    White PC, Grossberger D, Onufer BJ, Chaplin DD, New MI, Dupont B, Strominger J (1985) Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc Natl Acad Sci USA 82:1089–1093PubMedGoogle Scholar
  36. 36.
    White PC, New MI, Dupont B (1986) Structure of the human steroid 21-hydroxylase genes. Proc Natl Acad Sci USA 83:5111–5115PubMedGoogle Scholar
  37. 37.
    White PC, New MI, Dupont B (1987) Congenital adrenal hyperplasia. N Engl J Med 316:1519–1524PubMedGoogle Scholar
  38. 38.
    White PC, Vitek A, Dupont B, New MI (1988) Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc Natl Acad Sci USA 85:4436–4440PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • D. Strumberg
    • 1
  • B. P. Hauffa
    • 2
  • B. Horsthemke
    • 3
  • H. Grosse-Wilde
    • 1
  1. 1.Institut für ImmunologieUniversitätsklinikum EssenEssen 1Germany
  2. 2.Klinik fÜr Kinder- und JugendmedizinUniversitätsklinikum EssenEssen 1Germany
  3. 3.Institut für HumangenetikUniversitätsklinikum EssenEssen 1Germany

Personalised recommendations